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1 Introduction

Thermodynamics aims at describing global properties of macroscopic systems, ignoring
their microscopic structure.

1.1 Pressure

Consider an elementary area d ~A in a fluid (the arrow denotes the direction perpendicular

to the area). The force d ~F applied on one side of this area by the fluid is proportional to

d ~A and the pressure P is defined as

d~F = Pd ~A.

The pressure is an isotropic quantity (independent of the orientation of the area). If
we consider an infinitesimal parallelepipedic volume (dimensions dx, dy and dz), the x-
component of the force applied on the volume is

dFx = P (x, y, z)dydz − P (x + dx, y, z)dydz = −
∂P

∂x
dxdydz.

The same holds for the other components, such that the force per unit volume dτ = dxdydz
due to the pressure is given by

d~F

dτ
= −~∇P. (1)

The pressure unit is the Pascal: 1 Pa = 1 N.m−2.

1.2 Temperature

Zeroth Law: Two systems in thermal equilibrium with a third one are in thermal equilibrium
between themselves.

This Law is the basis of our concept of temperature and leads to different empirical
methods to measure it. The ’official’ way to define the temperature is the following.
Consider a gas in a volume V with a pressure P . We see experimentally that the product
PV goes to a value which depends only on the temperature when P → 0, value which is
independent of the gas. If we make this experiment in two different situations A and B,
we define the absolute temperatures TA and TB by the ratio

(PV )A

(PV )B

=
TA

TB

,

and the value T0 = 273, 16K (unit: Kelvin) for the triple point of water.
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1.3 Transformation of a system

A state variable is a parameter used to describe the macroscopic state of a system. This
variable is extensive if it is proportional to the volume and intensive if it is independent of
the volume. The equation of state gives the relation between the different state variables
(for example: pressure, volume and temperature), relation which defines the system.

A system is at the equilibrium if each of its state variable has a defined value which
does not evolve in time.

A reversible transformation consists in a series of equilibrium states infinitesimaly close,
for the system and for the surroundings. In a reversible process, the system and the
surroundings should be able to go backwards in time, passing through the same series of
equilibrium states.

An irreversible transformation is a transformation which does not satisfy the above
criteria. During an irreversible transformation, we cannot define the state variables since
the system does not pass through equilibrium states.

In practice, a reversible transformation is a process in which the evolution of the state
variables is ’slow enough’ compared to the typical relaxation times of the system.

1.4 Work and Heat

Consider a gas under the external pressure Pext. In an infinitesimal change of volume dV ,
the external pressure forces have the work

dW = −PextdV,

where by convention we count dW > 0 when the gas gets work from the surroundings and
dW < 0 when the gas gives work to the surroundings. In a reversible process, where the
equilibrium state is reached at each step and the internal pressure balances the external
one (Pext = P )

dWrev = −PdV (reversible process).

Let us consider another example of work. Suppose an interface liquid/gas of area A. It
is shown experimentally that a change in this area needs the work

dW = γdA,

where γ is the surface tension. As an application, we can compute the difference ∆P
between the pressure inside a drop of liquid of radius R and the pressure outside the drop.
In a change of radius, the work of the surface tension is

dW1 = γd(4πR2),
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and the work of the pressure forces is

dW2 = −∆Pd
(

4

3
πR3

)

.

The surface tension has the tendency to shrink the drop and the inside pressure to increase
the radius. The equilibrium is obtained when dW1 + dW2 = 0, such that

∆P =
2γ

R
.

The heat Q is the non-mechanical transfer of energy due to a difference of temperature
between two systems. It flows through a system by molecular agitation, from one to the
next.

An adiabatic process is a process without heat exchange Q = 0. In reality, there is no
real adiabatic process, but we can make this approximation if the heat transfers are slow
enough compared to the typical time scale of the process.

As well as for the work, the heat is defined during a transformation and does not
characterize the state of a system.

2 First Law

2.1 Internal Energy

The internal energy of a system is the sum of the energies of the different degrees of
freedom.

In the example of a gas, the total energy consists in the different kinetic energies of the
particles (translation, rotation, vibration) and the potential energies corresponding to the
interaction between particles.

For a general system, we expect the conservation of the energy and assume the First Law:
To any system corresponds a state function U called the internal energy. The change of U
in a transformation is equal to the energy (work and heat) exchanged with the surroundings.

A state function is a function of the parameters which define the state of the system:
it is independent of the transformations which led to the given state (see fig.1).

The First Law reads quantitatively

∆U = W + Q,

and for an infinitesimal transformation
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P
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initial state

path 1

path 2

path 3

W3, Q3

W1, Q1

W2, Q2

Figure 1: Different transformations connecting the initial and the final states. Work and
heat are different in each case: W1 6= W2 6= W3 and Q1 6= Q2 6= Q3, but the change
in internal energy is independent of the path: ∆U = U(final state) − U(initial state) =
W1 + Q1 = W2 + Q2 = W3 + Q3.

dU = δW + δQ.

We note dU since it corresponds to the differential of a function and δW or δQ since these
correspond to infinitesimal energy transfers and not to differentials of functions: they
depend on the path (in the parameter space) that the system followed to go from one state
to another.

For a gas, the change of internal energy is

dU = −PextdV + δQ, (2)

and for a reversible process, where Pext = P during the transformation,

dUrev = −PdV + δQ (reversible process).

From Eq.(2), we obviously have the following property: the change in internal energy
in a process with constant volume is equal to the heat exchanged with the surroudings, i.e.

∆U = Q (V =Constant).

Finally, we define the heat capacity at constant volume by

CV =

(

∂U

∂T

)

V

.
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2.2 Enthalpy

Many processes occur under constant pressure. Thus it is convenient to introduce another
state function with the dimension of an energy: the enthalpy H defined by

H = U + PV.

We will see in section 6 that H is a Legendre transform of U . For the moment, we can say
that if the pressure is constant P = P0,

∆H = ∆U + P0∆V = −P0∆V + Q + P0∆V = Q,

such that the change in enthalpy is equal to the heat exchanged with the surroundings:

∆H = Q (P=Constant).

We define the heat capacity at constant pressure CP by

CP =

(

∂H

∂T

)

P

.

As an application, consider a system 1 (mass m1, initial temperature T1 and heat ca-
pacity per unit mass c1) put in contact with a system 2 (mass m2, initial temperature
T2 and heat capacity per unit mass c2), such that they can exchange heat only (at con-
stant pressure) and they are isolated from the surroundings. We can compute the final
temperature T0 by noting that the total enthalpy is conserved:

0 = ∆H1 + ∆H2 = m1c1(T0 − T1) + m2c2(T0 − T2),

such that finally

T0 =
m1c1T1 + m2c2T2

m1c1 + m2c2

.

Thus the final temperature is the weighted average of the initial temperatures, the weights
being the heat capacities Ci = mici (i = 1, 2).
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P1 V1 P2 V2

Figure 2: The gas flows adiabatically through a porous plug and sees its pressure drop.

2.3 Joule-Kelvin throttling process

This process is a well-known example where the enthalpy is conserved. Suppose that a
gas of initial pressure P1 passes through a porous plug inside a cylinder, in an adiabatic
way (see fig.2). The plug induces a pressure drop such that the gas emerges with pressure
P2 < P1. So as to describe quantitatively this irreversible process, imagine the following
equivalent process: a given quantity of gas, of volume V1, is compressed in the plug by a
piston under the external constant pressure P1 and, when emerging out of the plug, pushes
another piston with constant pressure P2 so as to arrive in the final state, with volume V2.
The work exchanged with the surroudings is W = P1V1 − P2V2 and the heat Q = 0, such
that the first law reads

U2 − U1 = Q + W = P1V1 − P2V2,

which can be written H2 = H1: the process is isenthalpic. Note that this property holds
for any gas: it is independent of the equation of state that defines the system.

3 Ideal gas

3.1 Definition

From a macroscopic point of view, an ideal gas can be defined by its equation of state:
PV = Constant×T . Since P and T are intensive variables and V is extensive, the constant
must be extensive: it is proportional to the number of moles n, such that

PV = nRT.

A mole contains N = 6.0221× 1023 particles and R = 8.314J.mol−1.K−1.
As an example, we can compute the pressure decrease in an ideal gas of uniform tem-

perature T , in a uniform gravitation field g. Consider a slice of gas between the altitude z
and z + dz, of mass dm and occupying the volume dV . Its density ρ(z) satisfies

ρ(z) =
dm

dV
= M

dn

dV
= M

P (z)

RT
,

8



where M is the mass of a mole and dn the number of moles. Using the result (1), the
equilibrium of the slice of gas reads

dP

dz
+ ρ(z)g = 0,

such that

P (z) = P0 exp
{

−
Mg

RT
z
}

,

with P0 = P (0).

3.2 Phenomenological derivation of the kinetic pressure

From the microscopic point of view, the essential property of an ideal gas is that there are
no interactions between the particles.

We derive here an expression of the pressure in terms of the mean quadratic velocity
of the particles of the gas, using a phenomenological microscopic description.

Let us consider an area A of the container of the gas, perpendicular to the x-axis (see

fig.3). A particle hitting A induces a force ~f = −md~v/dt where its velocity decreases from
~v to 0 during the time dt. In the time ∆t, the particles with velocity of component vx

along the x-axis will give the force Fx with

∆tFx = −
∑

∫

0

vx

mdv =
∑

mvx,

where the sum runs over the particles. If N is the total number of particles in the gas of
total volume V , the number of particles hitting the area A in the time ∆t is A|vx|∆tN/V .
The force Fx is then

Fx =
1

2
mv2

xA
N

V
,

where the factor 1/2 is present so as not to count the particles with velocity −~v. The
reemission of the particle in the gas involves a new force F ′

x = Fx (reaction of the container),
such that the pressure is

P =
Fx + F ′

x

A
= m

N

V
v2

x,

where v2
x is the mean squared velocity. The isotropy tells us that v2

x = (v2
x + v2

y + v2
z)/3 =

(v?)2/3, where v? is the mean quadratic velocity. The pressure finally satisfies
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Figure 3: Particles hitting the wall of the container.

PV =
mN(v?)2

3
, (3)

and the ideal gas equation of state thus gives

v? =

√

3RT

M
. (4)

The result (4) tells us that the mean quadratic velocity of the particles depends on the
temperature only. This important point will be used for the energetic properties of an ideal
gas.

3.3 Internal energy

We have seen that the mean quadratic velocity of the particles in an ideal gas is a function
of the temperature only. Consider now the internal energy of a monoatomic ideal gas. This
energy consists only in the translation kinetic energy of the particles: there is no rotation
or vibration (monoatomic) and no potential energy (ideal gas), thus

U =
∑ 1

2
m(v?)2 =

1

2
nM(v?)2 =

3

2
nRT.

The essential result is that U depends on the temperature only. For a general ideal gas,
this property is still valid and we will show this in the chapter 6. It is called the first Joule
law. The enthalpy H = U +PV = U +nRT also depends on the temperature only: this is
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the second Joule law. As a consequence, an ideal gas does not see its temperature change
in a Joule-Kelvin throttling process.

We have also

CV =
dU

dT
CP =

dH

dT
,

and CV and CP are functions of T only.
From their definition and the relation H = U + nRT , we obviously have

CP − CV = nR, (5)

which is called the Mayer relation. Finally, we define the ratio

γ =
CP

CV

,

which is larger than 1, since CP > CV (see Eq.(5)).

3.4 Isothermic compression

Let us see an example of isothermic transformation. Suppose a reversible process at con-
stant temperature T , where an ideal gas is compressed from a volume V1 to a volume V2.
The work is given by

W = −
∫ V2

V1

PdV = −nRT
∫ V2

V1

dV

V
= nRT ln

(

V1

V2

)

= nRT ln
(

P2

P1

)

.

For the temperature to be constant, one must check that the compression is slow enough
so that the heat can flow through the system. Anyway, the reversibility implies that the
process must be slow compared to the typical time of energy exchanges.

In such a process, since T=Constant, the internal energy does not change ∆U = 0,
such that the heat exchanged with the surroundings is Q = −W .

3.5 Adiabatic compression

In the situation of an adiabatic compression, the transformation must be quick enough, so
that the approximation Q = 0 is valid. Still, the compression will be supposed reversible.
The equation of state implies

dP

P
+

dV

V
=

dT

T
. (6)

But we also have dU = CV dT = −PdV , such that
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dT

T
= −

P

CV T
dV = −

nR

CV

dV

V
,

and therefore, using Eq.(6),

dP

P
+
(

1 +
nR

CV

)

dV

V
= 0.

With the Mayer relation (5), we obtain

dP

P
+ γ

dV

V
= 0,

which integrates as (we suppose that γ is constant)

PV γ = Constant (adiabatic and reversible).

As a consequence, in a Clapeyron diagram (P, V ), the slope of an adiabatic transformation
is larger (in absolute value) than the slope of an isothermic transformation (PV =Constant)
since γ > 1.

The work during such a compression between the states (P1, V1) and (P2, V2) is

W = −
∫ V2

V1

PdV = −P2V
γ
2

∫ V2

V1

dV

V γ
,

such that

W =
P2V2 − P1V1

γ − 1
(adiabatic). (7)

Note now that since Q = 0, we have ∆U = W and thus in this particular case W is a state
function, independent of the transformation between the initial state 1 and the final state
2. Therefore Eq.(7) is valid for any adiabatic transformation of an ideal gas.

3.6 Carnot cycle

A system describes a cycle when it comes back to its initial state. In this case, the important
point is that the internal energy, being a state function, does not vary:

∆Ucycle = 0.

12



A

B
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V

P

adiabatic

adiabatic

isothermal

isothermal
T

T

1

2

Figure 4: An example of Carnot cycle in the Clapeyron diagram (P, V ). Heat is exchanged
with the surroundings during the isothermic stages AB and CD only. The cycle is followed
clockwise, which means that it describes an engine.

In the Clapeyron diagram, a cycle goes clockwise if W < 0 (case of the thermal engines)
and goes in the trigonometric sense if W > 0.

A Carnot cycle is a reversible cycle followed by a gas in contact with two heat sources.
We will see the Carnot cycles more generally in section 5 but consider now the case of an
ideal gas operating under two isothermic transformations linked by two adiabatic transfor-
mations (see fig.4).

Let T1 and T2 be the two temperatures (T2 > T1) of the isothermic processes with the
associated heats Q1 < 0 and Q2 > 0, and W be the total work. We have

0 = ∆U = W + Q1 + Q2.

We define the efficiency η by the ratio of the work obtained by the user of the engine (this
work is negative since the gas gives it to the surroundings) over the heat taken from the hot
source (of temperature T2) which represent the energy coming from the chemical reactions
during the explosion in the engine. We have then

η = −
W

Q2

= 1 +
Q1

Q2

To compute this efficiency, we need Q1 and Q2. During the isothermic transformations,
the internal energy does not vary (ideal gas) so that Q = −W . Consider the isothermic
compression at the temperature T1 from the state (PA, VA) to the state (PB, VB), PB > PA.
We have
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Q1 = +
∫ VB

VA

PdV = nRT1 ln
VB

VA

= nRT1 ln
PA

PB

,

which is negative. For the other isothermic process, between the states (PC , VC) and
(PD, VD) at temperature T2, we have

Q2 = nRT2 ln
PC

PD

,

which is positive. These two processes are linked by adiabatic transformations, such that

PBV γ
B = PCV γ

C and PAV γ
A = PDV γ

D,

and therefore, when using the equation of state, PC/PD = PB/PA. Finally, the efficiency
is

η = 1−
T1

T2

.

We will see in section 5 that this efficiency is actually independent of the gas and that
it is the maximum efficiency that one can obtain in a real process which is not reversible.

4 Second Law

The approach to the Second Law which is presented here does not follow the historical
developments, but is more convenient from the formal point of view.

4.1 Motivations

We have seen the notion of reversibility. Obviously, many phenomena are not reversible
(diffusion of a drop of ink in water, cooling of a hot metallic rod in cold water, free expansion
of a gas,...) for which we never see the processes evolve backwards in time. Still, this would
not invalidate the conservation of energy. Thus the First Law is not enough to describe
these processes. To complete the study of macroscopic systems and give an ’arrow’ in time
to the irreversible processes, we assume the Second Law: To any system corresponds an
extensive state function S called the entropy, such that S increases during a transformation
of an isolated system and reaches its maximum value at the equilibrium.

Note that S is not only defined for isolated systems, but is defined whenever we know
the state parameters of a system.
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4.2 Fundamental thermodynamic identity

Consider an isolated system: its entropy is a function of its internal energy U and its
volume V . Let us consider the intensive quantity τ defined by

1

τ
=

(

∂S

∂U

)

V

,

and consider two systems A and B in contact such that they exchange heat only and they
are isolated from the rest of the Universe. The change in the total entropy is

dS = dSA + dSB =

(

∂SA

∂UA

)

V

dUA +

(

∂SB

∂UB

)

V

dUB =
(

1

τA

−
1

τB

)

dUA, (8)

since U = UA + UB =Constant. The Second Law tells us that when the equilibrium is
reached dS = 0, such that τA = τB. Moreover, during a transformation we have dS > 0,
such that τA > τB implies dUA < 0: the heat goes from A to B. Therefore τ has the
characteristics of a temperature and we identify it with T : we define the entropy such that

(

∂S

∂U

)

V

=
1

T
. (9)

We also define the intensive quantity π by

π = T

(

∂S

∂V

)

U

,

and consider that the two systems A and B exchange volume and not heat (their tem-
perature T is the same), but they are still isolated from the rest of the Universe. Similar
arguments as the ones which lead to Eq.(8) give

dS =
(

πA

T
−

πB

T

)

dVA,

since V = VA + VB =Constant. Again, at the equilibrium dS = 0, such that πA = πB.
During a transformation we have dS > 0, such that πA > πB implies dVA > 0: the volume
of A increases. Therefore π has the characteristics of a pressure and we identify it with P :
besides the property (9), we also define the entropy such that

T

(

∂S

∂V

)

U

= P.

We conclude that the entropy satisfies the fundamental thermodynamic relation, valid in
ANY transformation

15



dS =
dU

T
+

P

T
dV (any process). (10)

The last relation also implies the important following one: for a reversible process, since
dUrev = −PdV + δQ, the infinitesimal change of entropy is

dSrev =
δQ

T
(reversible).

Let us see an example where we can make a quantitative identification between τ and
T , π and P . Consider a gas in a cylinder closed by a piston linked to a spring. The system
gas + spring is isolated from the rest of the Universe. The equilibrium of the piston results
in the balance of the pressure force due to the gas and the tension of the spring. We
have the following parameters: the gas internal energy U , its entropy S and its volume V .
The state of the spring is completely determined by the state of the gaz since its length
is fixed by the volume V and it has no entropy: the spring is a mechanical system whose
state is completely determined by its length (to a macroscopic state corresponds only one
microscopic state - see the statistical approach to the notion of entropy in subsection 4.4).
The equilibrium state is such that

0 = dS =

(

∂S

∂U

)

V

dU +

(

∂S

∂V

)

U

dV =
1

T
dU +

(

∂S

∂V

)

U

dV (11)

The global system being isolated, there is no heat exchange and thus dU = −PdV (we
suppose that the small transformations around the equilibrium state are reversible), such
that we find from Eq.(11)

P

T
=

(

∂S

∂V

)

U

, (12)

which shows the consistency of the previous identifications.
To conclude, let us compute the change in entropy for an ideal gas which goes from the

state (T1, V1) to the state (T2, V2). We have

dS = CV

dT

T
+ nR

dV

V
= nR

(

dV

V
+

1

γ − 1

dT

T

)

,

such that (we suppose that γ is a constant)

S2 − S1 = nR ln





V2

V1

(

T2

T1

)

1

γ−1



 .

We note with this result that the entropy increases with the volume and the temperature,
which is a general property (for isolated systems).
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Figure 5: A and B exchange heat only and are isolated from the rest of the Universe. Thus
QA + QB = 0.

4.3 Heat exchanges

Let us see some simple but important examples of computation of change in entropy

Example 1 Two identical systems A and B exchange heat only and are isolated from
the rest of the universe (see fig.5). Their initial temperatures are TA and TB and their heat
capacity at constant volume is C.

The equilibrium temperature is T0 = (TA + TB)/2 and we can suppose the transforma-
tion reversible since S is a state function:

∆S =
∫

(

δQ

T

)

A

+
∫

(

δQ

T

)

B

= C ln
T 2

0

TATB

, (13)

since δQ = CdT . Suppose now that TB/TA = 1 + ε with ε << 1. A Taylor expansion of
the result (13) gives

∆S = C
ε2

4
+ ...,

such that the entropy is of the second order in the difference of temperatures. This result
justifies the notion of reversibility: a small step in temperature can in specific cases be
considered isentropic.

Example 2 We define a heat reservoir by a system whose temperature does not change,
whatever the process occurs in which it exchanges heat with another system. Let T0 be its
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temperature and T1, C be the initial temperature and heat capacity at constant volume of
a system which exchanges heat with the reservoir.

The heat received by the system is Q = C(T0 − T1) such that the change in entropy of
the reservoir is −Q/T0 = C(T1/T0− 1) since its temperature does not change. The change
in entropy of the system is computed in the same way as in the previous example and the
total change in entropy is finally

∆S = C
(

ln
T0

T1

+
T1

T0

− 1
)

.

We can easily check that this result is always positive, showing the irreversibility of the
process: an ice cube dropped in the sea will never come back to its initial state.

4.4 Statistical aspect of the entropy

A given isolated system is submitted to a number of constraints, as for example the value of
its energy U and the value of its volume V . These constraints define a macroscopic state of
the system. But to each of these macroscopic state corresponds a lot of microscopic states.
Consider for example a gas in a rigid box which has no interaction with the rest of the
universe. A microscopic state would correspond to the list of all the individual positions
of the particles, as well as their velocities. Any microscopic state is a priori possible, as
long as it is consistent with the given macroscopic constraints of the system.

We say that a microscopic state of a system (in a given macroscopic state) is accessible
if this state is consistent with the macroscopic constraints. The starting point in Statistical
Physics is to assume that for any isolated system, each accessible microscopic state has the
same probability to occur.

Let us call Ω the number of accessible microscopic states of a system (in a given macro-
scopic state). The probability of each accessible microscopic state is thus 1/Ω and we
define the statistical entropy SS by

SS = k ln Ω, (14)

where k is the Boltzmann constant k = R/N . This definition helps us understand the idea
that the entropy measures the lack of information concerning the microscopic state of the
system: SS increases with Ω.

It is shown that the definition (14) is consistent with all the properties of the thermody-
namical entropy S that we have defined up to now, i.e. SS = S. We can check for example
the additivity of SS: consider a system divided in two parts, with entropies S1 = k ln Ω1

and S2 = k ln Ω2. For each accessible microscopic state of the subsystem 1, we have Ω2

accessible microscopic states for the subsystem 2, such that the total number of accessible
microscopic states for the global system is Ω = Ω1Ω2. The global entropy is then

S = k ln Ω = k ln (Ω1Ω2) = k ln Ω1 + k ln Ω2 = S1 + S2,
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which shows that the statistical entropy is indeed an extensive quantity.
To conclude, we note that the computation of the entropy with its statistical definition

is rather an involved task, besides some simple cases as will be seen in section 7.

4.5 Third law of Themodynamics

We have actually defined the differential dS of the entropy with the fundamental relation
(10), and not the entropy S itself. As a consequence, the change in entropy of a system is
well defined, but not the value of S in a given state. We are thus left with an ambiguity
which is solved as follows.

Historically, it has been argued that the change in entropy of a system, in any process,
vanishes in the limit T → 0. Then, from the statistical interpretation of the entropy in
terms of a measure of lack of information concerning the microscopic state of a system, it
was assumed by Planck that for a perfect cristal at zero temperature, the entropy is zero.
Indeed, the positions of every atom/molecule is exactly known: they are located at the
lattice sites of the crystal. As a consequence, the complete microscpic state of the system
is known and the entropy should be zero.

The Third Law of Thermodynamics assumes then the following: the entropy of any
system vanishes at zero temperature.

As a consequence, one can show that the heat capacity of a system should vanish at
zero temperature. Indeed, we have

dU = TdS − PdV = T

(

∂S

∂T

)

V

dT +

[

T

(

∂S

∂V

)

T

− P

]

dV,

such that

CV =

(

∂U

∂T

)

V

= T

(

∂S

∂T

)

V

.

For a system involved in a transformation at constant volume, we have then

S(T0) =
∫ T0

0

CV

T
dT,

since S(0) = 0 (CV should be seen as a T -dependent function in the previous integral).
The only way for this integral to be convergent is to have CV → 0 when T → 0, which
proves the property.

5 Thermal engines

5.1 Carnot-Clausius inequality

We saw in the last section that the entropy S of a system in contact with a heat reservoir
(temperature T0) verifies
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0 ≤ ∆STotal = ∆S + ∆Sreservoir = ∆S −
Q

T0

,

where Q is the heat taken by the system. We conclude that the change in entropy of the
system is such that

∆S ≥
Q

T0

.

For a system in contact with n reservoirs, we have (additivity of the entropy)

∆S ≥
n
∑

i=1

Qi

Ti

.

In the situation where the system describes cycles, we have ∆S = 0 such that

n
∑

i=1

Qi

Ti

≤ 0,

which is the Carnot-Clausius inequality, characteristic of the irreversible processes.
As a consequence, let us show that a thermal engine cannot operate with one heat

reservoir only: if it was the case, we should have Q/T ≤ 0 and thus Q ≤ 0. But the system
follows cyclic transformations, such that ∆U = W + Q = 0. We conclude that W ≥ 0,
which means that the system takes work from the surroundings: it cannot be an engine.
This property is known as the ’Kelvin statement’ of the second law.

Similarly, we have the ’Clausius statment’ of the second law: a system which operates
in cycles without work cannot take heat from a cold reservoir to give it to a hot one. If it
was the case (we note Q1 > 0 the heat taken from the cold reservoir and Q2 < 0 the heat
given to the hot one), we would have ∆U = Q1 + Q2 = 0 and Q1/T1 + Q2/T2 ≤ 0, what is
not possible with T1 < T2.

5.2 Carnot’s theorem

The general definition of a Carnot cycle is a reversible cyclic process where a system
operates between two heat reservoirs.

Let T1 and T2 be the two temperatures of the reservoirs (T2 > T1 and Q2 > 0, Q1 < 0).
The process being reversible, we have for the global system

0 = ∆STotal = ∆S + ∆Sreservoirs = ∆Sreservoirs = −
Q1

T1

−
Q2

T2

.
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(a) (b)

(c) (d)

Figure 6: The different phases of a 4-stroke engine. The valves are represented with thick
lines. (a) The mixture petrol/oxygen is pumped into the cylinder when the piston goes
down. (b) The mixture is compressed as the piston goes up, pushed by the vehicle moving
on. (c) The explosion of the mixture pushes the piston down. This is the phase where
work is generated by the engine. (d) The piston goes up again and pushes the burned gas
outside.
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We have seen that the efficiency of the engine is defined as η = 1 + Q1/Q2 such that

ηCarnot = 1−
T1

T2

,

which is the result we found for an ideal gas (in section 3.6). We showed here that it is inde-
pendent of the gas considered and of the details of the transformations (besides reversibility
and two isothermic processes). Then, for an irreversible process, since ∆STotal ≥ 0, we will
always have

η ≤ ηCarnot,

which is Carnot’s theorem.

5.3 Refrigerators

A refrigerator takes heat from a cold source (the inside of the fridge) to give heat to a hot
one (the room in which the fridge is) . As we have seen with the Clausius statment of the
second law, this is not possible if there is no work. The system that we consider in this
case is a fluid which operates in cycles between the two heat reservoirs. A cycle consists in
the following steps: the liquid fluid comes inside the fridge, takes heat to evaporate, then
is compressed by an electric engine and goes back to the liquid state by giving heat to the
outside. The work is the one given by the electric engine which compresses the fluid so
as to impose the change of phase gas → liquid and is thus positive since it is given to the
fluid, whereas it is negative for an engine.

During a cycle, the internal energy does not change, such that 0 = ∆U = W +Q1 +Q2,
with Q1 > 0 and Q2 < 0. But W > 0 means that Q1 < |Q2|: the heat taken from the
inside is smaller than the heat given to the outside (in absolute value). As a consequence,
an open fridge does not cool the room in which it is!

6 Thermodynamic potentials

6.1 Mathematical properties

Implicit functions Let f(x, y, z) be a function which takes a constant value. We have

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz = 0. (15)

In a plane z =Constant, x can be seen as an implicit function of y or y as an implicit
function of x. We have then from Eq.(15)
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(

∂x

∂y

)

z

= −

(

∂f

∂y

)

z
(

∂f
∂x

)

z

and

(

∂y

∂x

)

z

= −

(

∂f

∂x

)

z
(

∂f
∂y

)

z

,

such that

(

∂x

∂y

)

z

(

∂y

∂x

)

z

= 1.

This can be checked for example with the equation of state of an ideal gas:

(

∂P

∂V

)

T

= −
nRT

V 2
=

(

∂V

∂P

)

−1

T

.

We can also easely check that

(

∂x

∂y

)

z

(

∂y

∂z

)

x

(

∂z

∂x

)

y

= −1.

Legendre transform Let f(x) be a function and call its derivative y = f ′(x). y is a
function of x but we suppose that the relation can be inverted such that we consider x as
a function of y. Define then g = f − xy. The derivative of g with respect to y is

dg

dy
=

df

dx

dx

dy
− x−

dx

dy
y = −x.

We see that g has natural variable y since its derivative is known and simple. g is called
the Legendre transform of f . Another intersting property of the Legendre transform deals
with its second derivative:

d2g

dy2
= −

dx

dy
= −

(

dy

dx

)

−1

, (16)

such that we have the simple relation between the second derivatives of f and g:

g′′(y) = − [f ′′(x)]
−1

. (17)

As an example, we have H = U + PV , such that the enthalpy H is the Legendre
transform of the internal energy U with respect to the variable −V (S, the other variable
of U , does not play a role here). Therefore we have (∂H/∂P )S = V .
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6.2 Helmholtz and Gibbs free energies

S and V are the natural variables of U . But these variables might not be convenient from
the experimental point of view. Suppose that the convenient variables are T and V . We
define then the Helmholtz free energy F as the Legendre transform of the internal energy
with respect to the variable S

F (T, V ) = U(S, V )− TS,

such that dF = −SdT − PdV and thus

(

∂F

∂V

)

T

=

(

∂U

∂V

)

S

= −P and

(

∂F

∂T

)

V

= −S.

On the other side, if we know the variables T and P , it is convenient to define the Gibbs
free energy G as the Legendre transform of the enthalpy with respect to the variable S

G(T, P ) = H(S, P )− TS,

such that dG = −SdT + V dP and thus

(

∂G

∂P

)

T

=

(

∂H

∂P

)

S

= V and

(

∂G

∂T

)

P

= −S.

Note that G is a Legendre transform of U with respect to both variables S and −V :
G(T, P ) = U(S, V ) + PV − TS. Of course, H, G and F are state functions as U and S.

Finally, note that these functions contain all the same physics. If we know one of them,
we can find the others. The Legendre transform just involves a change of variables which
are more convenient for a given physical problem.

Why do we introduce F and G? Consider a system depending also on other parameters
that P , V or T and which transforms under a process where T and V are constant. This
system can exchange heat with the surroundings. In this situation, we have seen that
∆U = Q and ∆S ≥ Q/T , so that the evolution of the system is such that ∆F ≤ 0. If now
the system transforms under a process where T and P are constant, we have ∆H = Q and
∆S ≥ Q/T so that this time the evolution of the system is such that ∆G ≤ 0.

We could consider U as a function of (T, V ) or (T, P ), but the evolution of the system
would not be ruled by simple conditions on U as we have for F or G.

6.3 Maxwell relations

A function f of two variables x and y is such that its derivatives with respect to x and y
commute. Hence
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y

y+dy

x x+dx

Figure 7: Commutativity of the partial derivatives. A derivative with respect to a variable
tells how the function changes when this variable increases by an infinitesimal quantity.
Going from (x, y) to (x+dx, y+dy) can be done in two different ways: (x, y)→ (x+dx, y)→
(x + dx, y + dy) and (x, y)→ (x, y + dy)→ (x + dx, y + dy). Both ways lead to the same
result.

∂2f

∂x∂y
=

∂2f

∂y∂x
. (18)

If we apply this property to the different state functions that we introduced, we obtain:

dU = TdS − PdV such that

(

∂T

∂V

)

S

= −

(

∂P

∂S

)

V

dF = −SdT − PdV such that

(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

dH = TdS + V dP such that

(

∂T

∂P

)

S

=

(

∂V

∂S

)

P

dG = −SdT + V dP such that

(

∂S

∂P

)

T

= −

(

∂V

∂T

)

P

.

6.4 Energy equation

Let us consider a system with independent variables T and V . We have

TdS = dU + PdV =

[

P +

(

∂U

∂V

)

T

]

dV +

(

∂U

∂T

)

V

dT,

such that

25



T

(

∂S

∂V

)

T

= P +

(

∂U

∂V

)

T

,

and with the Maxwell relation obtained from dF , we finally have

(

∂U

∂V

)

T

= T

(

∂P

∂T

)

V

− P. (19)

This equation tells us that for an ideal gas, (∂U/∂V )T = 0: the internal energy depends on
the temperature only. We thus generalized to any ideal gas this result which was derived
with a microscopic model in the case of the monoatomic ideal gas. Besides, the present
derivation is independent of any microscopic consideration.

6.5 Generalized Mayer relation

The relation (5) was valid for ideal gas only and we can generalize it to any fluid depending
on two independent parameters. If we look at the internal energy as a function of T and
V , we define

dU = CV dT + (l − P )dV, (20)

where CV and l are parameters which in general depend on T and V . Note that in the
case of an ideal gas lideal = P since U depends on T only. From the definition (20), we
have l = (∂U/∂V )T + P and with the energy equation, we find then

l = T

(

∂P

∂T

)

V

. (21)

Note here that with this relation, it is easy to check that lideal = P . The heat capacity CP

appears in the enthalpy. We have

dH = d(U + PV ) =

[

CV + l

(

∂V

∂T

)

P

]

dT +

[

V + l

(

∂V

∂P

)

T

]

dP,

so that

CP =

(

∂H

∂T

)

P

= CV + l

(

∂V

∂T

)

P

,

and finally, using Eq.(21)

CP − CV = T

(

∂P

∂T

)

V

(

∂V

∂T

)

P

.
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One can easily check this generalized Mayer relation in the case of an ideal gas. Remember
that in the general case, CP and CV do not depend on T only (as it is the case for an ideal
gas) but are functions of two independent variables.

7 Other systems

7.1 Van der Waals gas

So far we have seen one example of equation of state, for the ideal gas. The Van der Waals
equation of state takes into account non ideal effects corrections. It reads, for one mole

(

P +
a

V 2

)

(V − b) = RT. (22)

In Eq.(22), the parameter b corresponds to the volume (small compared to V ) occupied by
the particles of the gas which actually have a finite size and they cannot interpenetrate.
The term a/V 2 (small compared to P ) corresponds to a dynamical pressure due to the
interaction between particles. For n moles, we have to make the substitutions a → n2a,
b→ nb and R→ nR, since P and T are intensive variables and V is extensive.

Let us study one effect of this equation of state: the volume dependence of the internal
energy. Write

dU = CV dT + (l − P )dV, (23)

and suppose that the real gas expands freely form the volume V1 to the volume V2 > V1

in an adiabatic process, such that dU = 0 since there is no heat or work exchanged with
the surroundings. For an ideal gas, this should imply that dT = 0 but for a real gas, this
implies a temperature change. We have from Eq.(23) and dU = 0

dT

dV
=

P − l

CV

= −
a

CV V 2
, (24)

since we obtain from the equation of state (22)

P =
RT

V − b
−

a

V 2
,

and we know that (see Eq.(21))

l = T

(

∂P

∂T

)

V

=
RT

V − b
.

Let us show that in the case of Van der Waals gas, the heat capacity CV does not depend
on the volume: the expression of dU implies (see property (18))
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(

∂CV

∂V

)

T

=

(

∂

∂T
(l − P )

)

V

=

(

∂

∂T

(

a

V 2

)

)

V

= 0, (25)

such that CV depends on T only. The general principles of Thermal Physics give us the
property (25) but cannot lead to the knowledge of CV itself: we need to develop microscopic
models if we wish to find the temperature dependence of CV . But the change in temperature
being small for the process under study, we will suppose that CV is a constant. We have
then from Eq.(24)

∆T =
∫ V2

V1

dT =
a

CV

(

1

V2

−
1

V1

)

< 0.

A Van der Waals gas does not follow the first Joule law and cools down in a free expansion.

7.2 Stretched wire

We will briefly describe here the similarities between the study of a stretched wire and the
study of a gas.

The length of a wire depends on the force f acting on it and on the temperature T .
The work δW necessary to generate the extension dx of the wire is δW = +fdx. The
infinitesimal change in the internal energy is then

dU = TdS + fdx,

where S is the entropy of the wire. The differential of the free energy F is

dF = −SdT + fdx,

such that the corresponding Maxwell relation reads

(

∂f

∂T

)

x

= −

(

∂S

∂x

)

T

. (26)

If we now wish to consider U as function of T and x, we introduce the heat capacity at
constant length Cx and the parameter k (which are functions of T and x) to parametrize
dU as follows

dU = CxdT + (k + f)dx.

But we also have
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dU = T

(

∂S

∂T

)

x

dT +

[

T

(

∂S

∂x

)

T

+ f

]

dx,

such that, taking into account the Maxwell relation (26), we obtain

k = −T

(

∂f

∂T

)

x

.

This system is thus very similar to a gas, where −f plays the role of the pressure and x
plays the role of the volume. The equation of state can be for example given by the law
x = x(f, T ), which of course depends on the wire.

7.3 Black body radiation

Consider a cavity of volume V with walls at temperature T , generating an electromagnetic
radiation inside the cavity. A black body is such a cavity which re-emits all the radiation
absorbed by its walls. The electromagnetic waves induce a radiation pressure P on the
walls of the cavity and we can consider this system as a gas of photons, with state variables
(P, V, T ).

Our aim is to derive the so called Stefan’s Law giving the temperature dependence of
the energy radiated by a black body.

For this, we write the internal energy of the cavity radiation as U = V u(T ), since it is
an extensive quantity. To find the radiation pressure, we use the kinetic pressure (3) that
we derived for an ideal gas:

P =
mN

3V
c2 =

1

3
ρc2,

where c is the speed of light and ρ the ”mass density” of photons. From the relativistic
mass/energy relation we know that ρ = u/c2, such that

P =
1

3
u.

We have now all the required state variables and can use the energy equation (19) which
reads then

u =
T

3
u′ −

1

3
u,

where u′ is the derivative of u with respect to T . The integration of this equation leads to
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u(T ) = Constant× T 4,

which is Stefan’s law. Note that to derive this result we needed a microscopic assumption:
we supposed that the light is composed of particles, which is a quantic property. We could
not have derived Stefan’s law with the general principles of thermodynamics only.

7.4 Spin temperature

We will consider a simple example where the statistical entropy of a system can be com-
puted: the perfect paramagnetic crystal. We will then compute the temperature of this
system of spins.

Consider N spins on the nodes of a crystal, in a magnetic field ~B. To each spin ~S
can be associated a magnetic moment ~µ = γ ~S whose component along ~B can take two
values ±µ0. We will neglect the interactions between the spins and consider only their
coupling to the external field ~B. The energy of a spin is then ±µ0B and the total energy
is E = (n−−n+)µ0B, where n− and n+ are the numbers of spin down and up respectively.
These numbers also satisfy n− + n+ = N , such that

n− =
1

2

(

N +
E

µ0B

)

and n+ =
1

2

(

N −
E

µ0B

)

.

The number of accessible microscopic states for a given macroscopic state is

Ω =
N !

n−!n+!
,

such that the entropy is

S = k ln Ω = k ln N !− k ln

(

N

2
+

E

2µ0B

)

!− k ln

(

N

2
−

E

2µ0B

)

!

The Stirling approximation

ln N ! ' N ln N −N for large N

can be used if we suppose that n− and n+ are of the order of N/2 and gives

SS ' kN ln N − k

(

N

2
+

E

2µ0B

)

ln

(

N

2
+

E

2µ0B

)

− k

(

N

2
−

E

2µ0B

)

ln

(

N

2
−

E

2µ0B

)

.
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We can now compute the temperature of the system and find that

1

T
=

∂SS

∂E
'

k

2µ0B
ln

(

N − E/µ0B

N + E/µ0B

)

. (27)

Note that T given by Eq.(27) can be negative, depending on the sign of n− − n+, that
is on the sign of E! This comes from the fact that in a system with a finite number of
degrees of freedom, the entropy can be a decreasing function of the energy. But we must
not forget that the model considered here excludes any other interaction than the coupling
to the external field. It is never the case in reality and this negative temperature situation
is accessible only during a relaxation time, out of equilibrium, where in principle we cannot
define the temperature and where the other interactions neglected here have not led to an
equilibrium state yet.

8 Changes of phase

8.1 Chemical potential

For the study of phase transitions, the Gibbs free energy G is very useful, since we usually
know T or P . Consider an equilibrium between the liquid (n moles) and vapour (n′ moles)
phases of a given constituent, together in a closed box. Both individual systems are open
since they can exchange matter: their number of moles is not constant. We define then
the chemical potential µ of the liquid and µ′ of the vapour by

dGliquid = −SdT + V dP + µdn

dGvapour = −S ′dT + V ′dP + µ′dn′

If we let the system evolve from an out-of-equilibrium sate, we know that the evolution is
such that dG = dGliquid + dGvapour ≤ 0. At constant pressure and constant temperature,
we have then (µ − µ′)dn ≤ 0 since n + n′ =Constant. Therefore dn > 0 implies µ′ > µ:
the matter transforms from the phase with the larger chemical potential towards the phase
with the smaller chemical potential. At the equilibrium state, dG = 0 since G reaches its
minimum (the entropy reaches its maximum) and the chemical potentials are thus equal:

µ = µ′ (equilibrium).

These results are general and concern also the chemical reactions where we usually have
more than 2 open systems.

The Gibbs free energy G can be expressed in terms of the chemical potentials of the
different constituents that are present in a given phase. With c constituents, G is a function
of T , P and n1, n2, ..., nc. G being an extensive function, it has the following property:
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point
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Figure 8: Three phases in the diagram (P, T ). The lines represent states where two phases
are in contact. At the triple point, the three phases are in contact. Liquid and gas are
not fondamentally different: a process from A to B involves a phase transition along the
continous path, whereas no phase transition occurs along the dashed path which goes
around the critical point. The curve joining the triple point and the critical point is the
saturated vapour pressure PS(T ).

G(T, P, λn1, ..., λnc) = λG(T, P, n1, ..., nc),

for any λ. A derivative with respect to λ leads then to the general property

G =
c
∑

i=1

µini, (28)

since µi = ∂G/∂ni.
The chemical potential is an intensive variable and thus depends on intensive quantities

only: T , P and the molar fractions xi = ni/(n1 + ... + nc).

8.2 Phase rule

Suppose that we have c constituents in φ phases, in equilibrium under fixed T and P . We
have then cφ + 2 parameters: the molar fraction xi of each constituent in each phase, the
temperature and the pressure. But these parameters are not independent: the sum of the
molar fractions gives 1 in each phase (φ relations) and the equilibrium implies the equality
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Figure 9: A liquid is heated up at constant pressure: when the first bubble of vapour
appears, the two phases are in contact and the temperature follows a plateau until the last
drop of liquid dissapears.

of the chemical potentials for the c constituents in each phase (cφ − 1 relations). The
number of independent parameters is then

n = cφ + 2− [φ + c(φ− 1)] = c + 2− φ.

For a pure constituent in equilibrium between two phases, we have then 1 independent
parameter. Thus the pressure P is a function of the temperature T (or the opposite), such
that T is constant during a phase transition at a given pressure.

If a pure constituent is in equilibrium between three phases, the phase rule tells us
that there are no free parameters anymore. Thus the triple point exists only for one
set of parameters T, P . For water, we have Ttriple = 273.16 K and Ptriple = 597.27 Pa
(approximately 0.6 per cent of an atmosphere).

8.3 Evaporation

Consider a box with a given volume V , containing the liquid and the vapour phases of a
given constituent (N moles in total). The phases are in equilibrium at the temperature T
(we neglect the volume of the liquid phase compared to the volume of the vapour). Since
we have one free parameter (say T ), the pressure is given by a function PS(T ), called the
saturated vapour pressure. If we consider the vapour as an ideal gas, it verifies

PS(T )V = n(T )RT,
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Figure 10: If the volume of a liquid increases at constant temperature: (i) For a
temperature lower than the critical temprature TC , when the first bubble of vapour appears,
the two phases are in contact and the pressure follows a plateau until the last drop of liquid
dissapears. (ii) For a temperature larger than TC , there is no distinction between liquid
and vapour.

where the number of moles n(T ) is not constant, since liquid is evaporating: both vapour
and liquid are open systems. Thus PS is not a linear function of T , it is actually growing
up quicker and its precise evolution with T depends on the constituent under study. When
the temperature increases and the last drop of liquid disappears, the vapour contains all
the matter (constant number of moles) and we recover the usual ideal gas equation of state:
the pressure grows linearly with the temperature.

The latent heat L is the heat necessary for the unit mass to change of phase, at a given
temperature. We know that the transition occurs at fixed temperature and pressure, such
that L = ∆h = ∆g + T∆s, where ∆h, ∆g, ∆s are the differences, per unit mass, of the
enthalpy, the Gibbs free energy and the entropy respectively, between the two phases. The
Gibbs free energy in the whole process of the phase transition does not change since the
temperature and the pressure remain the same and the chemical potentials are equal, such
that L = T∆s. The latent heat can then be linked to the slope dPs/dT as follows. The
equilibrium is such that µ1 = µ2 (the indices 1 and 2 denote the phases) and the derivative
of this equality with respect to the temperature gives

(

∂µ1

∂T

)

P

+

(

∂µ1

∂P

)

T

dPs

dT
=

(

∂µ2

∂T

)

P

+

(

∂µ2

∂P

)

T

dPs

dT
. (29)

The chemical potentials are Gibbs free energies per unit mass (see Eq.(28)) and thus we
have
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(

∂µ

∂P

)

T

= v and

(

∂µ

∂T

)

P

= −s,

where v and s are the volume and entropy per unit mass respectively. Eq.(29) gives then

dPs

dT
(v2 − v1) = s2 − s1,

and the latent heat is finally given by

L = T∆v
dPS

dT
. (30)

This last equation is the Clausius-Clapeyron equation and gives the latent heat to go from
the phase 1 to the phase 2 with ∆v = v2 − v1. Note: if the latent heat is defined per unit
mole, ∆v is the difference of volume per unit mole.

8.4 Orders of phase transitions

First Order: In the example of the change of phase (liquid ←→ vapour), two phases
coincide and each of these phases has its own volume per unit mass v and entropy per unit
mass s. As a consequence, there is a discontinuity in the first derivatives of the Gibbs free
energy per unit mass g since dg = −sdT + vdP .
In general, a first order phase transitions is such that the first derivatives of the Gibbs free
energy are discontinous (the Gibbs free energy itself is continuous). In these transitions,
due to the discontinuity of the volume per unit mass, there is a latent heat given by the
Clausius-Clapeyron equation (30).

Examples:

• (liquid ←→ vapour) and (solid ←→ liquid);

• (supersonducting ←→ normal metal) with an external magnetic field applied to the
sample.

Second Order: In this case, the first derivatives of the Gibbs free energy are continuous,
but not the second derivatives. A physical quantity that is discontinuous is for example
the heat capacity per unit mass. To see this, consider the enthalpy per unit mass h, with
differential

dh = Tds + vdP = T

(

∂s

∂T

)

P

+

[

v + T

(

∂s

∂P

)

T

]

dP.
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The heat capacity at constant pressure is then, per unit mass,

cp =

(

∂h

∂T

)

P

= T

(

∂s

∂T

)

P

= −T

(

∂2g

∂T 2

)

P

,

and is discontinuous as a second derivative of g.

Examples:

• (supersonducting ←→ normal metal) without external magnetic field;

• (superfluid 4He ←→ normal liquid 4He);

• (ferromagnetic ←→ paramagnetic).
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