Exercise sheet 2 - Quantum mechanics

1. The state space of a certain physical system is three-dimensional. Let $\left\{\left|u_{1}\right\rangle,\left|u_{2}\right\rangle,\left|u_{3}\right\rangle\right\}$ be an orthonormal basis of this space. The kets $\left|\psi_{0}\right\rangle$ and $\left|\psi_{1}\right\rangle$ are defined by

$$
\begin{aligned}
\left|\psi_{0}\right\rangle & =\frac{1}{\sqrt{2}}\left|u_{1}\right\rangle+\frac{i}{2}\left|u_{2}\right\rangle+\frac{1}{2}\left|u_{3}\right\rangle \\
\left|\psi_{1}\right\rangle & =\frac{1}{\sqrt{3}}\left|u_{1}\right\rangle+\frac{i}{\sqrt{3}}\left|u_{3}\right\rangle
\end{aligned}
$$

(a) Are these kets normalized?Justify your answer.
2. Let \hat{K} be an operator defined by $\hat{K}=|\varphi\rangle\langle\psi|$, where $|\varphi\rangle$ and $|\psi\rangle$ are two vectors of the state space.
(a) Under which conditions is \hat{K} Hermitian?
(b) Compute \hat{K}^{2}. Under which condition is \hat{K} a projector?
3. Let $\left|\phi_{n}\right\rangle(n=1,2, \ldots)$ be a complete set of orthonormal states, and let \hat{A} be an operator. The matrix elements of the operator \hat{A} are defined to be

$$
(A)_{i j}=\left\langle\phi_{i}\right| \hat{A}\left|\phi_{j}\right\rangle .
$$

The matrix element of the Hermitian conjugate \hat{A}^{\dagger} are defined to be

$$
\left(A^{\dagger}\right)_{i j}=\left\langle\phi_{i}\right| \hat{A}^{\dagger}\left|\phi_{j}\right\rangle .
$$

Show that the relationship between the matrix elements $(A)_{i j}$ and $\left(A^{\dagger}\right)_{i j}$ is

$$
\left(A^{\dagger}\right)_{i j}=(A)_{j i}^{*}
$$

Hence, show that for a Hermitian operator

$$
(A)_{i j}=(A)_{j i}^{*} .
$$

4. Let \hat{A} and \hat{B} be two Hermitian operators. Show that:
(a) The operators $\hat{A} \hat{B}+\hat{B} \hat{A}$ and $i(\hat{A} \hat{B}-\hat{B} \hat{A})$ are Hermitian
(b) The expectation value of \hat{A}^{2} in any state is always real and nonnegative
(c) If $\hat{A}^{2}=\hat{A}$, the only possible eigenvalues of \hat{A} are 0 and 1 .
