Exercise sheet 2 - Quantum mechanics

1. The state space of a certain physical system is three-dimensional. Let $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ be an orthonormal basis of this space. The kets $|\psi_0\rangle$ and $|\psi_1\rangle$ are defined by

$$\begin{aligned} |\psi_0\rangle &= \frac{1}{\sqrt{2}} |u_1\rangle + \frac{i}{2} |u_2\rangle + \frac{1}{2} |u_3\rangle \\ |\psi_1\rangle &= \frac{1}{\sqrt{3}} |u_1\rangle + \frac{i}{\sqrt{3}} |u_3\rangle \end{aligned}$$

- (a) Are these kets normalized?Justify your answer.
- 2. Let \hat{K} be an operator defined by $\hat{K} = |\varphi\rangle \langle \psi|$, where $|\varphi\rangle$ and $|\psi\rangle$ are two vectors of the state space.
 - (a) Under which conditions is \hat{K} Hermitian?
 - (b) Compute \hat{K}^2 . Under which condition is \hat{K} a projector?
- 3. Let $|\phi_n\rangle$ (n = 1, 2, ...) be a complete set of orthonormal states, and let \hat{A} be an operator. The matrix elements of the operator \hat{A} are defined to be

$$(A)_{ij} = \langle \phi_i | \hat{A} | \phi_j \rangle.$$

The matrix element of the Hermitian conjugate \hat{A}^{\dagger} are defined to be

$$(A^{\dagger})_{ij} = \langle \phi_i | \hat{A}^{\dagger} | \phi_j \rangle \,.$$

Show that the relationship between the matrix elements $(A)_{ij}$ and $(A^{\dagger})_{ij}$ is

$$(A^{\dagger})_{ij} = (A)^*_{ji}.$$

Hence, show that for a Hermitian operator

$$(A)_{ij} = (A)_{ii}^*.$$

- 4. Let \hat{A} and \hat{B} be two Hermitian operators. Show that:
 - (a) The operators $\hat{A}\hat{B} + \hat{B}\hat{A}$ and $i(\hat{A}\hat{B} \hat{B}\hat{A})$ are Hermitian
 - (b) The expectation value of \hat{A}^2 in any state is always real and non-negative
 - (c) If $\hat{A}^2 = \hat{A}$, the only possible eigenvalues of \hat{A} are 0 and 1.