Exercise sheet 1 - Quantum mechanics

1. The operators $A_{i}(i=1, . .4)$ are defined as follows:
(a) $A_{1} \psi(x)=x^{3} \psi(x)$
(b) $A_{2} \psi(x)=\frac{d}{d x} \psi(x)$
(c) $A_{3} \psi(x)=\sin [\psi(x)]$
(d) $A_{4} \psi(x)=\int_{a}^{x} \psi(s) d s$

Which of these operators are Hermitian?Which are linear? Justify your answer.
2. A quantum particle is confined in a box of length L with impenetrable walls, the centre of the wall being at the origin of the coordinates. In the ground state, the wave function of the particle is given by

$$
\psi_{1}(x)=\left\{\begin{array}{c}
\left(\frac{2}{L}\right)^{1 / 2} \cos (\pi x / L),-\frac{L}{2}<x<\frac{L}{2} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

(a) What is the expectation value of the position x ?
(b) What is the expectation value of the momentum of the particle?
(c) Is the wave function an eigenfunction of the momentum operator? Justify your answer.
3. Consider the wavefunction

$$
\phi(\mathbf{p})=\frac{1}{(2 \pi \hbar)^{3 / 2}} \int \psi(\mathbf{r}) \exp [-i \mathbf{p} . \mathbf{r} / \hbar] d^{3} r .
$$

(a) Show that $\hat{\mathbf{p}} \phi(\mathbf{p})=\mathbf{p} \phi(\mathbf{p})$.Can one say this function is an eigenfunction of $\hat{\mathbf{p}}$?Why of why not?
(b) Show that $\hat{\mathbf{r}} \phi(\mathbf{p})=-i \hbar \nabla_{p} \phi(\mathbf{p})$, with $\nabla_{p}=\partial / \partial_{p x} \mathbf{i}+\partial / \partial_{p y} \mathbf{j}+\partial / \partial_{p z} \mathbf{k}$. Can one say this function is an eigenfunction of $\hat{\mathbf{r}}$?Why of why not?

