Coursework 3-Quantum mechanics
 Deadline: 20 March 2008

1. The spin-dependent Hamiltonian of an electron-positron system in the presence of a uniform magnetic field in the z direction can be written as

$$
\hat{H}=A \mathbf{S}^{\left(e^{-}\right)} \cdot \mathbf{S}^{\left(e^{+}\right)}+\left(\frac{e B}{m c}\right)\left(S_{z}^{\left(e^{-}\right)}-S_{z}^{\left(e^{+}\right)}\right)
$$

Suppose the spin function of the system is given by $\chi_{\uparrow}^{\left(e^{-}\right)} \chi_{\downarrow}^{\left(e^{+}\right)}$,i.e., the electron is in a spin-up state and the positron in a spin-down state. Is this an eigenfunction of the system
(a) For $A=0, B \neq 0$?
(b) For $A \neq 0, B=0$?

If it is, what is the energy eigenvalue?If it is not, what is the expectation value of \hat{H} ?
2. The wave function of a particle subjected to a spherically symmetric potential $V(r)$ is given by

$$
\psi(\mathbf{r})=(x+y+3 z) f(r)
$$

(a) Is ψ an eigenfunction of L^{2} ? If so, what is the l-value? If not, what are the possible values on may obtain when L^{2} is measured?
(b) What are the probabilities for the particle to be found in various m_{l} states?
3. Two particles of spin $1 / 2$ have spin operators \mathbf{S}_{1} and \mathbf{S}_{2}. The two-particle system is described by the singlet and triplet wave functions

$$
\chi_{0,0}=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
$$

and

$$
\begin{aligned}
\chi_{1,1} & =\alpha(1) \alpha(2) \\
\chi_{1,0} & =\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)] \\
\chi_{1,-1} & =\beta(2) \beta(1)
\end{aligned}
$$

respectively. Find the expectation value of the product $\mathbf{S}_{1} \cdot \mathbf{S}_{2}$ in the singlet spin state.
4. The spin properties of a system of two spin $1 / 2$ particles are described by the singlet and triplet wave functions stated in the previous question. If a third particle of spin $1 / 2$ is added to the system, show that the total spin quantum number of the particle can be $s=3 / 2$ (a quartet sate), or $s=1 / 2$ (a doublet state), and find the corresponding spin functions.
Hint: treat the original two-particle system as a single entity of either spin 0 or 1 and use the same considerations as in the case $\mathbf{J}=\mathbf{L}+\mathbf{S}$ discussed in class.
5. A particle of mass m is placed in an infinite one-dimensional potential well of width a

$$
V(x)=\left\{\begin{array}{c}
0,-a / 2 \leq x \leq a / 2 \\
+\infty \quad \text { elsewhere }
\end{array}\right.
$$

Assume that this particle, of charge q, is subject to a uniform electric field E, with the corresponding perturbation being

$$
W=q E x .
$$

Let ε_{1} and ε_{2} be the corrections to first and second-order in E for the energy of the ground state.
(a) Show that ε_{1} is zero. Did you expect that?Why or why not?
(b) Give the expression for ε_{2} in form of a series, whose terms are to be calculated in terms of q, E, m, a, \hbar
(c) Give a lower bound for ε_{2}, obtained by retaining only the principal term of the series.

You will need to employ the eigenfunctions $\psi_{n}(x)=\sqrt{2 / a} \cos (n \pi x / a), \mathrm{n}$ odd, and $\psi_{n}(x)=\sqrt{2 / a} \sin (n \pi x / a), \mathrm{n}$ even, and the eigenenergies

$$
E_{n}=\frac{n^{2} \pi^{2}}{2 m a^{2}}
$$

