Coursework 2 - Quantum mechanics Deadline: 28 February 2008

1. Let us consider a one-dimensional harmonic oscillator. At an initial time t = 0, this system is prepared in the state

$$|\psi(0)\rangle = \frac{1}{\sqrt{3}} |1\rangle + \frac{1}{\sqrt{3}} |2\rangle + \frac{1}{\sqrt{3}} |3\rangle,$$

which is a linear superposition of the first, second and third excited eigenstates of its Hamiltonian $\hat{H} = \hat{T} + \hat{V}$, where \hat{T} and \hat{V} , denote the kinetic and potential energy of this system, respectively.

- (a) Compute the initial expectation value $\langle \psi(0) | \hat{T} | \psi(0) \rangle$ of the kinetic energy.
- (b) As the system evolves in time, the expectation value $\langle \psi(t) | \hat{T} | \psi(t) \rangle$ changes, with $|\psi(t)\rangle = U(t,0) |\psi(0)\rangle (U(t,0))$ is the time evolution operator). Obtain explicit expressions for this time dependent expectation value.

Hint: Use the lowering and raising operators, together with the fact that

2. Consider the spherical harmonics

$$Y_1^1(\theta,\phi) = -\left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{i\phi}$$
$$Y_1^0(\theta,\phi) = \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta$$
$$Y_1^{-1}(\theta,\phi) = \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{-i\phi}.$$

- (a) Which of the above-stated functions is an eigenfunction of \hat{L}_z with eigenvalue $+\hbar$? Why?
- (b) Write the spherical harmonics $\tilde{Y}_1^1(\theta, \phi)$, $\tilde{Y}_1^0(\theta, \phi)$ and $\tilde{Y}_1^{-1}(\theta, \phi)$ obtained by performing a clockwise 90⁰ rotation of $Y_1^1(\theta, \phi)$, $Y_1^0(\theta, \phi)$ and $Y_1^{-1}(\theta, \phi)$ about the *x* axis. Show that the functions obtained are eigenfunctions of \hat{L}_y with the eigenvalues $+\hbar$, 0, $-\hbar$, respectively. **Hint:** write the spherical harmonics $Y_l^m(\theta, \phi)$ in terms of the cartesian coordinates x, y, z and of $r = \sqrt{x^2 + y^2 + z^2}$ and consider the

effect of rotating these functions as described above (how would the coordinates change?). Subsequently, transform back to the polar spherical coordinates.

- (c) Can the rotated spherical harmonics be written as a superposition of eigenfunctions of \hat{L}_z ? If so, how are they explicitly written? Which eigenvalues of \hat{L}_z can be measured in each case? **Hint:** The task is easier to perform if you write x/r, y/r and z/r in terms of spherical harmonics.
- 3. A system is in a state in which the z component of the orbital angular momentum L_z has the precise value \hbar . Consider now the operators $\hat{L}_1 = 3\hat{L}_x + \hat{L}_y$ and $\hat{L}_2 = 2\hat{L}_y$.
 - (a) What are the uncertainties of these operators in the given state?
 - (b) In the given state, may the square of the angular momentum have a precise value?Justify your answer.

Hint: Throughout, employ the commutation relations involving the components of the angular momentum operator and the generalized uncertainty relation for two observables A,B seen in class.