Coursework 1 - Quantum mechanics
 Deadline: 8th of February 2008

1. The electron in a Hydrogen atom is prepared in the state described by the wavefunction

$$
\psi(r)=c_{1} \psi_{100}(r)+c_{2} \psi_{200}(r)
$$

with

$$
\psi_{100}(r)=\frac{1}{\sqrt{\pi a_{0}^{3}}} \exp \left[-r / a_{0}\right]
$$

and

$$
\psi_{200}(r)=\frac{1}{\sqrt{8 \pi a_{0}^{3}}}\left(1-\frac{r}{2 a_{0}}\right) \exp \left[-r /\left(2 a_{0}\right)\right] .
$$

Thereby, both $\psi_{100}(r)$ and $\psi_{200}(r)$ are normalized wavefunctions.
(a) Show that, indeed, $\psi_{200}(r)$ is correctly normalized.
(b) What is the relationship between c_{1} and c_{2} so that the wavefunction is correctly normalized?
(c) Compute the expectation value of the electron potential energy

$$
V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

Consider equal contributions from each term in $\psi(r)$ (i.e., $c_{1}=c_{2}$).
(d) What are the possible values of $V(r)$ that can be measured? Would you expect this from any of the postulates of quantum mechanics? Discuss

In the above-stated exercises, you will need to empoly the radial integrals

$$
I_{n}=\int_{0}^{\infty} r^{n} \exp [-\alpha r] d r=\frac{n!}{\alpha^{n+1}}
$$

2. Let \mathcal{X} be the space of the differentiable functions $\psi(x)$, which are defined within an interval $\mathrm{x} \in[a, b]$, with $\psi(a)=\psi(b)=0$. Prove that
(a) the translation operator $T(\Delta)$, which is defined by

$$
T(\Delta) \psi(x)=\psi(x+\Delta)
$$

may be expressed in terms of $\hat{p}=-i \hbar d / d x$.
Hint: you will need to employ a Taylor expansion.
(b) T is unitary, i.e., $T T^{\dagger}=I$.
3. In a two dimensional vector space, consider the operator whose matrix, in an orthonormal basis $\{|1\rangle,|2\rangle\}$, is written

$$
\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

(a) Is σ_{y} Hermitian?Justify your answer
(b) Compute its eigenvalues and eigenvectors, giving their normalized expansion in terms of the $\{|1\rangle,|2\rangle\}$ basis.
Hint: To find (or guess) this basis, note that $\langle 1| \sigma_{y}|1\rangle=\langle 2| \sigma_{y}|2\rangle=$ $0,\langle 1| \sigma_{y}|2\rangle=-i$ and $\langle 2| \sigma_{y}|1\rangle=i$
4. The Hamiltonian operator H for a certain physical system is represented by the matrix

$$
H=\hbar \omega\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

while two other observables A and B are represented by the matrices

$$
A=\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda & 0 & 0 \\
0 & 0 & 2 \lambda
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccc}
2 \mu & 0 & 0 \\
0 & 0 & \mu \\
0 & \mu & 0
\end{array}\right)
$$

where λ and μ are real and nonvanishing numbers.
(a) Find the eigenvalues and eigenvectors of A, B
(b) If the system is in a state described by the state vector $\mathbf{u}=c_{1} \mathbf{u}_{1}+$ $c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}$, where $c_{i}(i=1,2,3)$ are complex constants and

$$
\mathbf{u}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \mathbf{u}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

i. Find the relationship between c_{1}, c_{2} and c_{3} so that \mathbf{u} is normalized to unity
ii. Find the expectation values of H, A, and B
iii. Are the $\mathbf{u}_{i} s$ eigenvectors of H ? Why or why not?
iv. What are the possible values of the energy which can be measured if the system is described by the state vector u ?

