Coursework 1 - Quantum mechanics Deadline: 8th of February 2008

1. The electron in a Hydrogen atom is prepared in the state described by the wavefunction

$$\psi(r) = c_1 \psi_{100}(r) + c_2 \psi_{200}(r),$$

with

$$\psi_{100}(r) = \frac{1}{\sqrt{\pi a_0^3}} \exp[-r/a_0]$$

and

$$\psi_{200}(r) = \frac{1}{\sqrt{8\pi a_0^3}} \left(1 - \frac{r}{2a_0}\right) \exp[-r/(2a_0)].$$

Thereby, both $\psi_{100}(r)$ and $\psi_{200}(r)$ are normalized wavefunctions.

- (a) Show that, indeed, $\psi_{200}(r)$ is correctly normalized.
- (b) What is the relationship between c_1 and c_2 so that the wavefunction is correctly normalized?
- (c) Compute the expectation value of the electron potential energy

$$V(r) = -\frac{e^2}{4\pi\epsilon_0 r}.$$

Consider equal contributions from each term in $\psi(r)$ (i.e., $c_1 = c_2$).

(d) What are the possible values of V(r) that can be measured? Would you expect this from any of the postulates of quantum mechanics? Discuss

In the above-stated exercises, you will need to empoly the radial integrals

$$I_n = \int_0^\infty r^n \exp[-\alpha r] dr = \frac{n!}{\alpha^{n+1}}.$$

- 2. Let \mathcal{X} be the space of the differentiable functions $\psi(x)$, which are defined within an interval $\mathbf{x} \in [a, b]$, with $\psi(a) = \psi(b) = 0$. Prove that
 - (a) the translation operator $T(\Delta)$, which is defined by

$$T(\Delta)\psi(x) = \psi(x + \Delta)$$

may be expressed in terms of $\hat{p} = -i\hbar d/dx$. Hint: you will need to employ a Taylor expansion.

(b) T is unitary, i.e., $TT^{\dagger} = I$.

Turn over...

3. In a two dimensional vector space, consider the operator whose matrix, in an orthonormal basis $\{|1\rangle, |2\rangle\}$, is written

$$\sigma_y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right).$$

- (a) Is σ_y Hermitian?Justify your answer
- (b) Compute its eigenvalues and eigenvectors, giving their normalized expansion in terms of the $\{|1\rangle, |2\rangle\}$ basis. Hint: To find (or guess) this basis, note that $\langle 1|\sigma_y|1\rangle = \langle 2|\sigma_y|2\rangle = 0, \langle 1|\sigma_y|2\rangle = -i$ and $\langle 2|\sigma_y|1\rangle = i$
- 4. The Hamiltonian operator H for a certain physical system is represented by the matrix

$$H = \hbar \omega \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right)$$

while two other observables A and B are represented by the matrices

$$A = \left(\begin{array}{rrr} 0 & \lambda & 0\\ \lambda & 0 & 0\\ 0 & 0 & 2\lambda \end{array}\right)$$

and

$$B = \left(\begin{array}{ccc} 2\mu & 0 & 0\\ 0 & 0 & \mu\\ 0 & \mu & 0 \end{array}\right),$$

where λ and μ are real and nonvanishing numbers.

- (a) Find the eigenvalues and eigenvectors of A, B
- (b) If the system is in a state described by the state vector $\mathbf{u} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3$, where $c_i (i = 1, 2, 3)$ are complex constants and

$$\mathbf{u}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

- i. Find the relationship between c_1, c_2 and c_3 so that **u** is normalized to unity
- ii. Find the expectation values of H, A, and B
- iii. Are the $\mathbf{u}_i s$ eigenvectors of H? Why or why not?
- iv. What are the possible values of the energy which can be measured if the system is described by the state vector u?