Answer THREE questions.

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

1. The WKB approximation for the wavefunction when E > V(x) is $\Psi(x) \simeq \frac{1}{\sqrt{k(x)}} \exp\left[\pm i \int_{-\infty}^{x} k(x') dx'\right]$. Discuss the regime of validity of the WKB approximation and explain why the expression above would not be valid close to a classical turning point. Give the corresponding form when E < V(x).

Outline a method whereby the two types of solution might be linked. Do not give extensive mathematical details. Do not derive connection formulae.

Quantum particles of energy E approach (from $x = -\infty$) a barrier where the potential, V(x), is of the form:

if -a > x V(x) = 0,

if $|a| \ge x$ $V(x) = V_0(1 - |x|/a)$ and

if a < x V(x) = 0.

where $V_0 > 0$ is a constant.

Obtain the turning points $x = t_1$ and $x = t_2$, where $t_2 > 0$, as a function of E. [2]

Explain why the WKB wavefunction, in the classically allowed region, (E > V(x)), to the right of the barrier takes the form: $\Psi_3 \simeq \frac{A}{\sqrt{k(x)}} \exp\left[i \int_{t_2}^x k(x')dx'\right]$ and outline briefly how the corresponding form within the barrier.

line briefly how the corresponding form within the barrier, $\Psi_2 \simeq \frac{A}{2\sqrt{q(x)}} \exp\left[-\int_x^{t_2} q(x')dx'\right] - \frac{iA}{\sqrt{q(x)}} \exp\left[-\int_x^{t_2} q(x')dx'\right]$ might be obtained. . [3]

Far to the left of the barrier, we can show that this connects with an incident wave of the form : $\Psi_{inc} \simeq \frac{-Ai}{\sqrt{k(x)}} (\frac{1}{4r} + r) \exp \left[-i \int_x^{t_1} k(x') dx' \right]$, where

 $r = \exp\left[\begin{array}{c} t_2 \\ t_1 \end{array}\right] q(x')dx' = e^{\lambda}.$

This corresponds asymptotically to free particles incident from the left. Show that, in the WKB regime (r large) the tunnelling probability

 $T = \frac{1}{(\frac{1}{4r} + r)^2} \simeq e^{-2\lambda}.$ [3]

For the particular barrier given above, calculate the tunnelling probability as a function of energy. You may use the integral $\int (1-y)^{1/2} dy = -\frac{2}{3}(1-y)^{3/2}$. [4]

[4]

[4]

2. The time-evolution of a quantum system is given by the time-dependent Schrödinger equation, $i\hbar \frac{\partial \psi}{\partial t} = H\psi$. An alternative formulation employs a time evolution operator $T(t, t_0)$ which satisfies a differential equation of the form: $i\hbar \frac{\partial T(t, t_0)}{\partial t} = HT(t, t_0)$. Show that the form appropriate for an infinitesimal time interval δt is:

$$T(t + \delta t, t) = \exp{-\frac{i}{\hbar}H(t)\delta t}.$$

Obtain also the form of $T(t, t_0)$ appropriate for a time-independent Hamiltonian. [5]

A quantum particle evolves in a time-periodic potential $V(x,t) = V(x,t+\tau)$, with period τ , too strong to be treated perturbatively. Its Floquet states take the form $\Psi_n(x,t) = \exp{-i\epsilon_n t} \ U_n(x,t)$ where $U_n(x,t) = U_n(x,t+\tau)$ and ϵ_n is a quasi-energy.

Explain how Floquet states may be used to evolve a general quantum state in a time-periodic potential. You should explain how they relate to $T(t, t_0)$. [5]

The Hamiltonian of the particle $H = H_0 + V(x, t)$, is the sum of a time-independent part, H_0 , and a time-periodic potential V(x, t).

Show, from the time-dependent Schrödinger equation, that we can calculate $U_n(x, t)$ from the eigenvalue equation:

$$FU_n(x,t) = \hbar \epsilon_n U_n(x,t)$$

[4]

Where the Floquet operator $F = H - i\hbar \frac{\partial}{\partial t}$.

The particle has a time-independent Hamiltonian H_0 with eigenfunctions $\psi_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$ where $n = 0, \pm 1, \pm 2...$, the coordinate $0 \le x \le 2\pi$ and $H_0\psi_n(x) = \psi_n(x)E_n$. The particle is also subjected to a strong laser field of form $V(x,t) = A\sin x\cos\Omega t$, corresponding to period $\tau = 2\pi/\Omega$.

We expand our Floquet states in a complete basis of orthonormal states, so $U_n(x,t) = \sum_{j,m} C_{j,m}^n \psi_j(x) \exp im\Omega t$. Using this basis, calculate the form of the matrix elements, $\langle jm|F|j'm' \rangle$, of the Floquet operator. [6]

PHYS4226/2005 CONTINUED

3. A system subjected to a time-dependent perturbation is described by a Hamiltonian:

$$H(\mathbf{r},t) = H_0(\mathbf{r}) + \lambda V'(\mathbf{r},t)$$

where λ is a small parameter. The eigenfunctions $\psi_n^{(0)}(\mathbf{r})$ and eigenvalues E_n of $H_0(\mathbf{r})$ are known. Given that a solution of the time-dependent Schrödinger equation can be written as:

$$\Psi(\mathbf{r},t) = \sum_{n} c_n(t) \psi_n^{(0)}(\mathbf{r}) \exp(-iE_n t/\hbar)$$

obtain a differential equation for the transition coefficients $c_n(t)$. [4] Initially, at time t_0 , the system is in a definite eigenstate $\psi_i^{(0)}(\mathbf{r})$. Show that at a later time t, to lowest order in λ , the transition amplitude for excitation of a state $\psi_k(\mathbf{r})$ of energy $E_k \ (\neq E_i)$ is given by

$$c_k(t) = \frac{1}{i\hbar} \int_{t_0}^t \langle \psi_k^{(0)}(\mathbf{r}) | \lambda V'(\mathbf{r}, t) | \psi_i^{(0)}(\mathbf{r}) \rangle e^{i\omega_{ki}t'} dt'$$

where $\omega_{ki} = (E_k - E_i)/\hbar$.

Show that the case i = k corresponds to a simple phase shift on the initial eigenfunction.

A particle in a magnetic field has eigenfunctions $\psi_n(\phi) = \frac{1}{\sqrt{2\pi}}e^{in\phi}$ where $n = 0, \pm 1, \pm 2...$, the coordinate $0 \le \phi \le 2\pi$ and the energies $E_n = n\epsilon$. At $t \le 0$ the particle is in the eigenstate corresponding to n = 2. At t > 0 it is acted on by a weak perturbation

$$\lambda V(\mathbf{r}, t) = B\sin\phi\exp{-\gamma t}$$

while for time t > T, the perturbation is turned off and $\lambda V(\mathbf{r}, t) = 0$. B and γ are constants.

Calculate which transitions are allowed and which are forbidden.

Calculate the probabilities, for all allowed transitions, that at later time t > T, the particle is in a state $n \neq 2$

Transitions to n = 0 are forbidden to first order. Discuss briefly how this might, however, be possible to second order.

[5]

[2]

[3]

[3]

4. Explain the significance of a wavefunction of the form:

$$\psi(\mathbf{r}) = \frac{1}{2k} \sum_{l=0}^{\infty} (2l+1) i^{l+1} \left[\frac{e^{-i(kr-l\pi/2)}}{r} - S_l \frac{e^{+i(kr-l\pi/2)}}{r} \right] P_l(\cos\theta)$$

in studies of quantum scattering. You should explain all the terms on the right hand side and discuss their physical significance, stating the regime of validity of such a wavefunction. Suggest a form of S_l for the case of elastic scattering. Suggest also a modification appropriate for inelastic scattering.

[5]

Modify the right-hand side of the above expression for the case where there is no interaction potential, hence where the wavefunction $\psi(\mathbf{r})$ corresponds to a simple plane wave e^{ikz} .

[2]

Hence show that the scattered part of the wavefunction $f(\theta) = \frac{e^{+ikr}}{r}$ has amplitude:

$$f(\theta) = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1)e^{i\delta_l(k)} \sin \delta_l(k) P_l(\cos \theta),$$

where δ_l is the l-th partial-wave phase-shift.

[4]

Now show that the total elastic cross-section, σ , is given by:

$$\sigma = \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \frac{1}{1 + \cot^2 \delta_l(k)}.$$
 [3]

When might you expect a resonant cross-section?

[1]

Obtain an approximate analytical form for the elastic cross section appropriate for low energies, explaining carefully your reasoning.

[2]

At low energies the phase-shifts from a scattering experiment are given as $\tan \delta_0(E) = \sqrt{(E/\epsilon)}$. Show that $\sigma \simeq \frac{4\pi\hbar^2}{2m} \frac{1}{E+\epsilon}$. [3]

NOTE: In answering this question, you may use this result: $\int_0^\pi P_l(\cos\theta) P_{l'}(\cos\theta) \sin\theta d\theta = \frac{2}{2l+1} \delta_{ll'}.$

 $\mathrm{PHYS}4226/2005$

CONTINUED

5. The Cartesian components of the spin angular momentum operators S, of a spin-1/2 particle, satisfy commutation relations $[S_i, S_j] = i\hbar S_k$ and $[S^2, S_i] = 0$, respectively, where i, j, k are cyclic permutations of x, y, z. The raising and lowering operators S_- and S_+ are defined by:

$$S_{\pm} = S_x \pm iS_y$$

Show that:

$$[S_z, S_{\pm}] = \pm \hbar S_{\pm}$$

and,

$$S_{\pm}S_{\mp} = S^2 - S_z^2 \pm \hbar S_z$$

 $|sm>=|\frac{1}{2}\;\frac{1}{2}>=|\alpha>$ and $|sm>=|\frac{1}{2}\;-\frac{1}{2}>=|\beta>$ are simultaneous eigenstates of S^2 and S_z such that:

$$S^2|sm> = s(s+1)\hbar^2|sm>$$

and,

$$S_z|sm>=m\hbar|sm>$$

By considering the result $S_{\pm}|sm>=C_{\pm}|sm\pm1>$ and assuming $<\psi|S_{\pm}|\phi>=<\phi|S_{\mp}|\psi>^*$, show that $C_{\pm}=\sqrt{[s(s+1)-m(m\pm1)]}\hbar$ [4]

 S_n is the component of the spin angular momentum operator along the direction of a unit vector $\hat{\mathbf{n}} = (\sin \theta, 0, \cos \theta)$. Show that:

$$S_n = \frac{1}{2} [\sin \theta S_+ + \sin \theta S_- + 2S_z \cos \theta]$$

[3]

[4]

Express S_n in matrix form in the basis of the eigenstates $|\alpha\rangle$ and $|\beta\rangle$. [4]

A spin-1/2 particle is subjected to a perturbation characterised by the operator $V = B(S^2 - S_n^2)$ where B is a constant. Work out the expectation value of V for a quantum particle in the state $|\chi\rangle = \frac{1}{\sqrt{2}}(|\alpha\rangle + |\beta\rangle)$. [5]

PHYS4226/2005

END OF PAPER