
5.1. In lectures it was stated that the covariant derivative of the metric was zero, ∇g = 0.

(a) Use this to show the often-useful property that index-raising and lowering operations can
be moved through covariant differentiation, for example

Vα;β = (gαγV
γ);β = gαγV

γ
;β

Applying the product rule:

Vα;β = (gαγV
γ);β = gαγ;βV

γ + gαγV
γ
;β.

since ∇g = 0, then gαβ;γ = 0 and so

Vα;β = gαγV
γ
;β

QED.

(b) Hence, given the relation
Vα;βγ − Vα;γβ = Rρ

αβγVρ

show that
V α

;βγ − V α
;γβ = Rρ

α
βγV

ρ

a relation used in lectures when discussing the Riemann tensor.

Changing α to σ and then multiplying by gασ

gασVσ;βγ − gασVσ;γβ = gασRρ
σβγVρ

which from the above result becomes

V α
;βγ − V α

;γβ = Rρα
βγVρ

Setting Vρ = gρσV σ then

V α
;βγ − V α

;γβ = gρσR
ρα

βγV
σ = Rσ

α
βγV

σ

5.2. Calculation of the Riemann tensor in one of the most tedious in GR, however, it is not difficult
– in principle – and is worth doing for the simplest case of all, the 2-sphere of radius a, labelled
in terms of the spherical polar angles θ and φ for which

ds2 = a2 dθ2 + a2 sin2 θ dφ2,
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and the only non-zero connection coefficients are Γθ
φφ = − sin θ cos θ and Γφ

φθ = Γφ
θφ = cot θ

(see problem sheet 4).

Evaluate the Riemann and Ricci tensors, and thus show that the Ricci scalar R = −2/a2.

The (non-zero) metric coefficients can be read from the interval: gθθ = a2, gφφ = a2 sin2 θ,
while gθθ = a−2 and gφφ = a−2 sin−2 θ. The covariant Riemann tensor is given by

Rαβγδ = gαρ (Γ
ρ
βδ,γ − Γρ

βγ,δ + Γ
σ
βδΓ

ρ
σγ − Γσ

βγΓ
ρ
σδ) .

Handout 4 shows that Rαβγδ is anti-symmetric in α and β and in γ and δ leaving only compo-
nents related to Rθφθφ. Thus

Rθφθφ = gθθ
(

Γθ
φφ,θ − Γθ

φθ,φ + Γ
σ
φφΓ

θ
σθ − Γσ

φθΓ
θ
σφ

)

,

= a2
(

sin2 θ − cos2 θ + cot θ sin θ cos θ
)

,

= a2 sin2 θ.

The Ricci tensor is given by
Rβγ = gαδRαβγδ

which in this case reduces to
Rβγ = gθθRθβγθ + gφφRφβγφ

Since the Ricci tensor is symmetric there are only 3 independent components in 2D which are

Rθθ = gθθRθθθθ + gφφRφθθφ

= −gφφRθφθφ

= −1.

Next
Rθφ = gθθRθθφθ + gφφRφθφφ = 0,

and finally
Rφφ = gθθRθφφθ + gφφRφφφφ = − sin2 θ.

Thus the Ricci scalar is

R = gαβRαβ

= gθθRθθ + gφφRφφ

= −
2

a2

5.3. When developing a model of the Universe, Einstein added an extra term to the field equations
so that they read

Rαβ −
1

2
Rgαβ + Λgαβ = kTαβ

where Λ is the “cosmological constant” and k = −8πG/c4.
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(a) Prove that these equations still satisfy the condition T αβ
;α = 0.

Taking the covariant derivative and contracting its index with α

Rαβ
;α −

1

2
R,αg

αβ −
1

2
Rgαβ ;α + Λgαβ ;α = kT αβ

;α

where the Leibniz rule for covariant derivatives has been used, and also we have set R;α =
R,α since R is scalar. The covariant derivative of the metric is zero, and so

Rαβ
;α −

1

2
R,αg

αβ = kT αβ
;α

As shown in the lectures, the left-hand side is zero by design, and so the term in Λ makes
no difference to T αβ

;α = 0, essentially because gαβ ;α = 0.

(b) Show that the Ricci scalar R = −kT + 4Λ where, as in lectures, T = gαβT αβ.

Contracting the field equations on α and β:

gαβR
αβ −

1

2
Rgαβg

αβ + Λgαβg
αβ = kgαβT

αβ

Now gαβgαβ = δαα = 4, so
R− 2R + 4Λ = kT,

so
R = −kT + 4Λ.

QED.

(c) Hence show that

Rαβ = k

(

T αβ −
1

2
Tgαβ

)

+ Λgαβ

Replacing the Ricci scalar in the field equations using the result above gives

Rαβ −
1

2
(−kT + 4Λ) gαβ + Λgαβ = kT αβ

after which a simple re-arrangement leads to the result here.

(d) Therefore, by modifying the Newtonian limit calculation used in lectures to derive the
value of k, show that in the limit of slow motion and weak fields, the 00 component of
the field equations becomes

∇2φ = 4πGρ− Λc2.
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If we follow the derivation from lectures, then from the 00-cpt we derived

−
1

c2
∇2φ = k

(

ρc2 −
1

2
ρc2

)

.

This just need Λg00 = Λ (weak field) added to the RHS. This immediately leads to the
new form of the Newtonian limit.

(e) Show then that the Newtonian potential at distance r from a spherically symmetric mass
M is

φ = −
GM

r
−
Λc2r2

6
.

From Gauss’ theorem,
∫

∇ · (∇φ) dV =

∮

∇φ · n̂ dA,

where n̂ is a unit outward pointing normal vector for each element of area dA covering a
closed surface. Taking a sphere of radius r centred on a point of spherical symmetry,

∮

∇φ · n̂ dA = 4πr2
dφ

dr
,

since ∇φ must everywhere point radially in such a case. Therefore

4πr2
dφ

dr
=

∫

(

4πGρ− Λc2
)

dV = 4πGM − Λc2
4πr3

3
,

so
dφ

dr
=

GM

r2
−

1

3
Λc2r.

Integrating

φ = −
GM

r
−

1

6
Λc2r2,

ignoring the constant of integration.

(f) What would be the physical effect of the cosmological constant term?

The gravitational field g = −∇φ, or radially

g = −
GM

r2
+

1

3
Λc2r.

Thus the cosmological constant acts as a repulsive force that gets stronger with radius.

What effect would it have upon the orbital periods of the planets?

The outer planets would need to move more slowly than expected to balance the gravita-
tional pull of the Sun and so would have longer periods than the standard P 2 ∝ a3 scaling
from Earth’s orbital period.
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(g) In 1997 evidence was found in observations of supernovae that indicates that the cosmo-
logical constant is not zero, but has a value of Λ = 1.2 × 10−52 m−2. Estimate whether
this would have observable effects upon the orbits of the planets.

We can get an estimate of the magnitude of the cosmological term by comparing it to
GM/r2. To give it a chance, we will compare it in the outer solar system, 50AU from
the Sun:

Λc2r

3GM/r2
=
Λc2r3

3GM
=

1.2× 10−52 × (3× 108)2 × (50× 1.5× 1011)3

3× 6.67× 10−11 × 2× 1030
= 1.1× 10−17.

The cosmological constant is negligible on Solar system scales.

Note that an unexplained deviation from Newton’s law of gravity has been observed in the
Pioneer probes which were tracked for many years after their launch in the early 1970’s.
This amounts to a constant extra acceleration towards the Sun of a = (8.74 ± 1.33) ×
10−10 ms−2. It is not yet known whether this is some mundane problem or whether it
requires new physics. The calculations above make it clear that it is not the result of the
cosmological constant which has the wrong sign and is far too feeble.

5.4. Consider the term Rgαβ where the Ricci scalar R = Rαβgαβ. Therefore

Rgαβ = Rαβgαβg
αβ,

but we know that
gαβg

αβ = 4,

therefore
Rgαβ = 4Rαβ.

What is wrong with these statements?

The line
Rgαβ = Rαβgαβg

αβ,

was a dangerous error comitted by a fair number in the 2011 exam. You should never have
more than one identical contravariant (up) or covariant (down) index. The first two symbols
on the right contract with each other and are unrelated to the final symbol. The line should
have been written

Rgαβ = Rµνgµνg
αβ,

whereby the final “simplification” is seen to be entirely wrong.

5.5. Show that, in the absence of a cosmological constant, the field equations in free-space can be
written as:

Rαβ = 0.
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We can say that T αβ = 0, so

Rαβ −
1

2
Rgαβ = 0.

However contracting with gαβ gives

R−
1

2
Rgαβg

αβ = −R = 0,

and so the equations reduce to
Rαβ = 0.

QED.

Does this imply that free-space must be flat?

No, it does not. If it did, one could have no gravitational fields in free-space and the planets
would all fly off in straight lines from the Sun. The Ricci tensor Rαβ is not the Riemann
curvature tensor, Rαβγδ. If the latter is zero, we are in flat space, but it has more degrees of
freedom (20) than the Ricci tensor (10), so while Rαβγδ = 0 implies that Rαβ = 0, the reverse
statement is not true.

5.6. * Starting from the connection coefficients of part (a) of Q4.8, show that the non-zero coeffi-
cients of the Ricci tensor for a spherically symmetric spacetime are:

Rtt = −
A′′

2B
+

A′

4B

(

A′

A
+

B′

B

)

−
A′

rB
,

Rrr =
A′′

2A
−

A′

4A

(

A′

A
+

B′

B

)

−
B′

rB
,

Rθθ =
1

B
− 1 +

r

2B

(

A′

A
−

B′

B

)

,

Rφφ = Rθθ sin
2 θ,

where the dashes and double-dashes indicates first and second derivatives with respect to r.

Set equal to zero (see previous question), these are the equations that lead to the Schwarzschild
metric with A(r) = c2(1− 2GM/c2r), B(r) = (1− 2GM/c2r)−1.

The (non-zero) connection coefficients are Γt
tr = A′/2A, Γr

tt = A′/2B, Γr
rr = B′/2B, Γr

θθ =
−r/B, Γr

φφ = −(r sin2 θ)/B, Γθ
rθ = 1/r, Γθ

φφ = − sin θ cos θ, Γφ
rφ = 1/r, Γφ

θφ = cot θ. The
general formula for the Ricci tensor is

Rαβ = Γρ
αρ,β − Γρ

αβ,ρ + Γ
ρ
ασΓ

σ
ρβ − Γρ

αβΓ
σ
ρσ.

Thus starting with Rtt we have, upon setting α = t and β =,

Rtt = Γ
ρ
tρ,t − Γρ

tt,ρ + Γ
ρ
tσΓ

σ
ρt − Γρ

ttΓ
σ
ρσ.
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The first term drops out because the metric is static and substituting in the connection (re-
membering that all partial derivatives wrt r become normal derivatives) we get

Rtt = −
d

dr

(

A′

2B

)

+
A′

2A

A′

2B
+

A′

2B

A′

2A
−

A′

2B

(

A′

2A
+

B′

2B
+

1

r
+

1

r

)

= −
A′′

2B
+

A′B′

2B2
+

A′

2B

(

A′

A
−

A′

2A
−

B′

2B
−

2

r

)

,

= −
A′′

2B
+

A′

2B

(

A′

2A
+

B′

2B
−

2

r

)

,

= −
A′′

2B
+

A′

4B

(

A′

A
+

B′

B

)

−
A′

rB
.

The other terms follow in a similar manner.

5.7. A line parameterised by λ and with tangent vector +U obeys the relation

∇*U
+U = f +U,

where f = f(λ) is a function of λ.

(a) Show that, by parameterising the line in terms of a new parameter µ such that

d2µ

dµdλ
= f,

the line is a geodesic.

In component form the relation is

d2xα

dλ2
+ Γα

βγ
dxβ

dλ

dxγ

dλ
= f

dxα

dλ
.

The switch to µ = µ(λ) can be made using

d

dλ
=

dµ

dλ

d

dµ
.

Setting the derivative dµ/dλ = µ′ and applying this relation then gives

µ′
d

dµ

(

µ′
dxα

dµ

)

+ Γα
βγ (µ

′)2
dxβ

dµ

dxγ

dµ
= fµ′

dxα

dµ
.

Taking the derivative through the first term leaves

(µ′)2
(

d2xα

dµ2
+ Γα

βγ
dxβ

dµ

dxγ

dµ

)

= µ′

(

f −
dµ′

dµ

)

dxα

dµ
.

Therefore if
dµ′

dµ
=

d2µ

dµdλ
= f,

the equation reduces to the standard geodesic equation ∇ *U ′
+U ′ = 0, where +U ′ is the tangent

vector of the line when parameterised by µ. The line is therefore a geodesic.
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(b) Hence show that if f is constant then

µ = Aefλ +B,

where A and B are constants.

d2µ

dµdλ
=

dλ

dµ

d

dλ

(

dµ

dλ

)

=
1

µ′

dµ′

dλ
=

d ln(µ′)

dλ
,

therefore the condition becomes
d ln(µ′)

dλ
= f.

Integrating
ln(µ′) = fλ+ k,

where k is a constant, so
dµ

dλ
= exp(fλ+ k).

Integrating for a second time then

µ = f−1 exp(fλ+ k) + k′,

where k′ is another constant. This is of the form

µ = Aefλ +B,

as given in the question.

5.8. Show that the worldline which maximises the integral
∫

Ldλ, where L = gαβẋαẋβ, and dots
denote derivatives with respect to λ, satisfies the relations

ẍα + Γα
βγẋ

βẋγ = 0,

where the connection is given by the Levi-Civita relation.

Maximisation or minimisation of the integral leads to the Euler-Lagrange equations

d

dλ

(

∂L

∂ẋα

)

−
∂L

∂xα
= 0,

and setting L = gβγẋβẋγ, one immediately obtains

d

dλ

(

gαγẋ
γ + gβαẋ

β
)

− gβγ,αẋ
βẋγ = 0.

The chain rule gives
d

dλ
=

dxδ

dλ

∂

∂xδ
= ẋδ ∂

∂xδ
.
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Applying this to the term in brackets gives

gαγẍ
γ + gβαẍ

β + gαγ,δẋ
δẋγ + gβα,δẋ

δẋα − gβγ,αẋ
βẋγ = 0.

Using the symmetry of the metric and relabelling dummy indices appropriately, this can be
written as

2gαγẍ
γ + (gαγ,β + gβα,γ − gβγ,α) ẋ

βẋγ = 0.

Multiplying by gσαand contracting on α

2δσγ ẍ
γ + gσα (gαγ,β + gβα,γ − gβγ,α) ẋ

βẋγ = 0.

Finally re-labelling α to δ and σ to α, and dividing by 2:

ẍα +
1

2
gαδ (gδγ,β + gβδ,γ − gβγ,δ) ẋ

βẋγ = 0.

Recognising the Levi-Civita connection we finally can write

ẍα + Γα
βγẋ

βẋγ = 0.

Note that these are only the correct equations of motion if λ is affine. Using L =
√

gαβẋαẋβ

gives the right equations for any λ, but they only reduce to the simple form here when λ is
affine (dL/dλ = 0).

5.9. ∗ Linearised GR: when gravitational fields are weak, one can find coordinates throughout
spacetime for which gαβ = ηαβ + hαβ with |hαβ| % 1.

(a) Show that to first order in h, the Ricci tensor can be written as

Rαβ =
1

2
ηγδ (hδγ,αβ + hαβ,δγ − hαγ,δβ − hδβ,αγ) .

Starting from the Riemann tensor

Rγ
αβδ = Γ

γ
αδ,β − Γγ

αβ,δ + Γ
σ
αδΓ

γ
σβ − Γσ

αβΓ
γ
σδ.

The last two terms are second order in h and can immediately be neglected. From the
Levi-Civita formula, the first term on the right-hand side is

Γγ
αδ,β =

[

1

2
gγσ (gσδ,α + gασ,δ − gαδ,σ)

]

,β

.

All the derivative terms are first-order in h, and therefore the metric outside the bracket
can be taken to be the Minkowski metric ηγσ and we find

Γγ
αδ,β =

1

2
ηγσ (hσδ,αβ + hασ,δβ − hαδ,σβ) .

Similarly, the second term gives

Γγ
αβ,δ =

1

2
ηγσ (hσβ,αδ + hασ,βδ − hαβ,σδ) .
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Taking the difference, using the commutativity of partial derivatives, we are left with

Rγ
αβδ =

1

2
ηγσ (hσδ,αβ + hαβ,σδ − hαδ,σβ − hσβ,αδ) .

Contracting on γ and δ (i.e. change δ to γ, and then re-labelling the dummy index σ to
δ gives the final expression.

(b) Hence show that to first-order in h, the Ricci scalar is given by

R = !h− hαβ
,αβ ,

where h is the trace, i,e h = ηαβhαβ, ! is the d’Alembertian

! = ηαβ∂α∂β =
1

c2
∂2

∂t2
−∇2,

and index raising and lowering involves η rather than g.

Contracting the formula for the Ricci tensor

R =
1

2
ηαβηγδ (hδγ,αβ + hαβ,δγ − hαγ,δβ − hδβ,αγ) ,

where again we can write η rather than g given that we are only retaining first-order
terms. The first term can be written as

1

2
ηαβηγδhδγ,αβ =

1

2
ηαβηγδ∂β∂αhδγ,

=
1

2
ηαβ∂β∂αη

δγhδγ,

=
1

2
!h.

The second term gives the same quantity. The third and fourth terms can both be regarded
as two index rasing operations applied to the last two indices, and after some re-labelling,
the answer emerges.

(c) Finally, show that the field equations can be written

h,αβ +!hαβ − ηγδ (hαγ,δβ + hδβ,αγ)− (!h− hσρ
,σρ) ηαβ = −

16πG

c4
Tαβ.

(This equation, which with a careful choice of coordinates can be greatly simplified, is
the starting point for the theory of gravitational waves.)

The field equations are

Rαβ −
1

2
Rgαβ = −

8πG

c4
Tαβ.

It is then just a case of putting the previous two formulae in, setting the gαβ = ηαβ to first
order, multiplying the whole thing by 2 and spotting that the first two terms of the Ricci
tensor can be re-written slightly.
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5.10. By working in inertial coordinates, prove the Bianchi identity, given, but not proved, in the
handouts:

Rαβγδ;µ +Rαβµγ;δ +Rαβδµ;γ = 0.

[Note the way the last three indices are cyclicly permuted.]

This question shows the power of inertial coordinates which simplify the work enormously. In
inertial coordinates first-order derivatives of the metric gαβ,γ and therefore connection coeffi-
cients Γα

βγ are all zero. Therefore consider Rαβγδ;µ. Fully expanded this has a correction term
involving the connection for each of the first four indices. In inertial coordinates however these
all disappear and we are left with

Rαβγδ;µ = Rαβγδ,µ,

an enormous simplification. The Riemann tensor has four terms, two of which involve prod-
ucts of the connection. When we take the derivatives of these using the product rule, the
resulting terms will have the connection multiplying a derivative of the connection. However
again inertial coordinates means that the connection is zero, so these terms drop out as well.
Remembering too that the metric derivatives are zero we are left with

Rαβγδ;µ = gαρ (Γ
ρ
βδ,γµ − Γρ

βγ,δµ) .

This is a huge simplification but the price we have paid is that this is not a tensor relation: it
only holds in inertial coordinates. Interchanging indices to get the other two terms gives us the
three relations (the first simply a repetition of the equation above):

Rαβγδ;µ = gαρ (Γ
ρ
βδ,γµ − Γρ

βγ,δµ) ,

Rαβµγ;δ = gαρ (Γ
ρ
βγ,µδ − Γρ

βµ,γδ) ,

Rαβδµ;γ = gαρ (Γ
ρ
βµ,δγ − Γρ

βδ,µγ) .

If these are added then using the symmetry on the two lower indices of the connection and the
commutativity of partial differentiation (symmetry in the two indices after the commas), it is
easily seen that all terms cancel and thus

Rαβγδ;µ +Rαβµγ;δ +Rαβδµ;γ = 0.

Now this is a tensor relation because the LHS is clearly a tensor and 0 represents the most
trivial tensor of all. So this is a covariant relation that holds in all coordinates. Very neat you
have to admit!

5.11. Prove that the Ricci tensor is symmetric.

The Ricci tensor is defined by
Rαβ = gµνRµαβν .

The symmetry/anti-symmetry relations of the Riemann tensor are

Rαβγδ = −Rβαγδ,

Rαβγδ = −Rαβδγ,

Rαβγδ = Rγδαβ.
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Applying these and also using the symmetry of the metric and suitable component re-labelling
shows that

Rαβ = gµνRµαβν ,

= gµνRβνµα,

= gµνRνβαµ,

= gνµRνβαµ,

= gµνRµβαν ,

= Rβα,

QED.

5.12. Show that in one-dimension there is no Riemann tensor while in two dimensions it has only
one independent component.

The only component is R1111 for a coordinate labelled with index 1. The anti-symmetry in the
last two indices proves that this must = 0, QED.

In 2 dimensions there are potentially 24 = 16 components which have indices 1111, 1112,
1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 2222. The
anti-symmetry relations

Rαβγδ = −Rβαγδ,

Rαβγδ = −Rαβδγ,

mean that we can eliminate all terms with a repeated index in the first or last pair of indices
and we are left with just four non-zero terms with indices 1212, 1221, 2112, 2121. However
the above two relations show all these terms are the same, give or take a sign, so there is only
one independent component. This single number is effectively what Carl Friedrich Gauss came
across in his “Theorema Egregium” (Remarkable Theorem) for the curvature of a 2D surface.
He found it remarkable that his formula only involved lengths within the surface despite his
setting up the problem from a 3D viewpoint. It took the work of Riemann 30 years later to
extend this work to more than 2 dimensions.

5.13. ∗ Show that the number of independent components of the Riemann tensor in N dimensions
is given by

1

12
N2(N2 − 1).

There are a possible N4 combinations of 4 indices (256 for N = 4), but the number of inde-
pendent values is severely limited by the symmetry relations:

Rαβγδ = −Rβαγδ,

Rαβγδ = −Rαβδγ,

Rαβγδ = Rγδαβ,
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and
Rαβγδ +Rαγδβ +Rαδβγ = 0.

The first two show that Riemann tensor in antisymmetric in the first and last pairs of indices
and thus there are N ′ = N(N − 1)/2 different combinations of each pair, giving a potential
(N ′)2 components, 36 for N = 4. However the third relation shows symmetry between the first
and last index pairs and thus there are

1

2
N ′(N ′ + 1) =

1

2

(

N(N − 1)

2

)(

N(N − 1)

2
+ 1

)

=
1

8
N(N − 1)(N2 −N + 2),

possible values, which gives 21 for N = 4. We finally need to include the fourth constraint.
One has to be careful not to overcount the constraints from this given the other symmetries.
For instance, consider the case of β = α, then

Rααγδ +Rαγδα +Rαδαγ = 0.

Anti-symmetry on the first pair of indices removes the first term, and anti-symmetry on the
second pair of indices allows us to reverse the indices on the second pair of the second term to
write

Rαδαγ = Rαγαδ.

But this is just the third of the symmetry relations, so we have learned nothing new. Therefore
we must require α &= β. Similar reasoning shows that all of the indices must be different.
The symmetries mean that the precise order of the indices is immaterial, so the number of
constraints is the number of ways of picking 4 objects from N , regardless of order:

N !

4!(N − 4)!
.

Thus the final number of independent coefficients is given by

1

8
N(N−1)(N2−N+2)−

1

24
N(N−1)(N−2)(N−3) =

1

24
N(N−1)(3N2−3N+6−N2+5N−6).

We are left with
1

24
N(N − 1)(2N2 + 2N) =

1

12
N2(N2 − 1),

QED. For N = 4, this gives 20 as quoted in lectures.
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6.1. The non-zero coefficients of Einstein’s field equations in empty space for a spherically symmetric
metric of the form

ds2 = A(r) dt2 − B(r) dr2 − r2
(

dθ2 + sin2 θ dφ2
)

,

are as follows:

Rtt = −
A′′

2B
+

A′

4B

(

A′

A
+

B′

B

)

−
A′

rB
= 0, (9)

Rrr =
A′′

2A
−

A′

4A

(

A′

A
+

B′

B

)

−
B′

rB
= 0, (10)

Rθθ =
1

B
− 1 +

r

2B

(

A′

A
−

B′

B

)

= 0. (11)

(The Rφφ component carries the same information as the Rθθ component.)

(a) By adding B× Eq. 9 to A× Eq. 10 show that AB = α, a constant.

Carrying out the manipulation indicated, the first two terms of each equations cancel
leaving

−
BA′

rB
−

AB′

rB
= 0,

or
d

dr
(AB) = 0,

hence AB = α, a constant. QED

(b) Hence use Eq. 11 to show that d(rA)/dr = α, and so

A(r) = α

(

1 +
k

r

)

,

where k is another integration constant.

Setting B′ = −BA′/A and B = α/A, then Eq. 11 reads

A

α
− 1 +

rA

2α

(

A′

A
+

A′

A

)

= 0,

or

A+ rA′ = α =
d

dr
(rA),

and finally

A = α

(

1 +
k

r

)

,

where k is another integration constant.
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(c) Finally, by considering the weak field limit, justify the Schwarzschild metric.

In weak fields the dt2 coefficient becomes

A(r) = c2
(

1 +
2φ

c2

)

,

and setting the Newtonian potential φ = −GM/r, we deduce α = c2, k = −2GM/c2.

6.2. With the cosmological constant, the field equations in empty-space become

Rαβ = Λgαβ.

Write down the modified versions of Eqs 9, 10 and 11 from Q6.1, and repeat the working to
show that the metric becomes

ds2 = c2
(

1−
2GM

c2r
−
Λr2

3

)

dt2 −
(

1−
2GM

c2r
−
Λr2

3

)−1

dr2 − r2
(

dθ2 + sin2 θ dφ2
)

.

The equations become

−
A′′

2B
+

A′

4B

(

A′

A
+

B′

B

)

−
A′

rB
= Λgtt = ΛA,

A′′

2A
−

A′

4A

(

A′

A
+

B′

B

)

−
B′

rB
= Λgrr = −ΛB,

1

B
− 1 +

r

2B

(

A′

A
−

B′

B

)

= Λgθθ = −Λr2.

The same procedure as before then gives

d

dr
(AB) = 0,

again, so AB = α still. Then the second part gives

d

dr
(rA) = α

(

1− Λr2
)

,

which on integration yields

rA = α

(

r + k −
Λr3

3

)

.

As before we know that for large r (but not so large that the cosmological constant matters),
A → c2(1 + 2φ/c2), so as before α = c2 and k = −2GM/c2 and therefore the modified version
of the metric follows straightforwardly.

6.3. Person A, stationary at r = rA from a mass M (Schwarzschild radial coordinates), regularly
sends pulses of light in the radial direction to person B who is stationary at r = rB > rA.
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(a) Show that along the path of the light-pulse

c dt =
dr

1− 2GM/c2r
.

Since the path is radial (and by symmetry it must be radial the whole way from A to B),
then dθ = dφ = 0 and we have

ds2 = c2
(

1−
2GM

c2r

)

dt2 −
(

1−
2GM

c2r

)−1

dr2.

Since the path is null ds2 = 0, and thus

c dt = ±
dr

1− 2GM/c2r
.

Clearly the positive root applies if the light travels outwards.

(b) Show that each pulse take the same coordinate time to travel from A to B.

This is one of those so-obvious-you-miss-it questions. The time is

c(tB − tA) =

∫ rB

rA

dr

1− 2GM/c2r
,

which is always the same since it contains no time dependence on the right-hand side.

(c) Hence show that, if A transmits pulses at rate νA, then B receives them at rate νB where

νB
νA

=

(

1− 2GM/c2rA
1− 2GM/c2rB

)1/2

.

The previous result shows that ∆tA = ∆tB where ∆tA is the coordinate time between
pulses sent by A, and ∆tB is the coordinate time between pulses received by B. However
for both A and B, dr = dθ = dφ = 0, so

c2 dτ 2 = c2
(

1−
2GM

c2r

)

dt2,

so
∆τA
∆τB

=
∆νB
∆νA

=

(

1− 2GM/c2rA
1− 2GM/c2rB

)1/2 ∆tA
∆tB

,

and given the equality of the coordinate time increments, the result follows.
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(d) What is the physical meaning of the equation of the previous part?

As A is closer to the mass M , νB/νA < 1, and B must deduce that A’s time progresses
more slowly than his/her own time. This is gravitational time dilation.

(e) By how much would the readings of two clocks differ after one year, if one was on the
surface of Earth while the other was far from the Earth but stationary with respect to it,
assuming that they were initially synchronised?

The clock on Earth would tick at

√

1− 2GME/c2RE ≈ 1−
GME

c2RE

the rate of the clock in space, so after 1 year it will have fallen behind by

GME

c2RE
∆t =

gRE

c2
∆t =

9.81× 6370× 103

(2.9979× 108)2
× 365× 24× 3600 = 0.022 sec .

(f) The spectrum of the surface of a white dwarf of radius R = 6000 km, mass M = 1M$

shows strong absorption at the wavelength of Hα, which has laboratory rest wavelength
λ = 656.276 nm.

i. What wavelength would be measured on Earth, assuming that the white dwarf is
stationary with respect to Earth?
[You may ignore any gravitational effects due to Earth.]

Setting rA = 6000 km and rB = ∞,

νB
νA

=
λA

λB
=

(

1− 2GM/c2rA
)1/2

=

(

1−
2× 6.67× 10−11 × 2× 1030

(3× 108)2 × 6× 106

)1/2

= 0.99975293,

which gives λB = 656.438 nm.

ii. An astronomer takes a spectrum of this white dwarf and mis-interprets the offset
wavelength as a Doppler shift. What spurious velocity along the line-of-sight would
the astronomer measure?

The first-order Doppler shift equation is

λ = λ0

(

1 +
v

c

)

,

where v is the component of velocity along the line-of-sight. Hence

v = c

(

λ

λ0

− 1

)

= 75 km s−1.
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(g) Which has a more significant effect upon the clocks in a typical commercial air flight (v ≈
900 kmhr−1, h ≈ 10,000m), the speeding up of time from being at a higher gravitational
potential than the ground or the slowing down from special relativistic time dilation?

Gravitational time dilation factor 1+gh/c2, SR Lorentz factor (1−v2/c2)1/2 ≈ 1−v2/2c2.
For this case

gh

c2
=

9.81× 104

(3× 108)2
= 1.1× 10−12,

while
v2

2c2
=

(900× 103/3600)2

2× (3× 108)2
= 3.5× 10−13,

so the gravitational effect will win out overall.

6.4. Obtain an expression for the coordinate time taken for light to travel radially from r1 to r2 in
Schwarzschild coordinates.

From the question above:

c(t2 − t1) =

∫ r2

r1

dr

1− 2GM/c2r
,

=

∫ r2

r1

r dr

r − 2GM/c2
,

=

∫ r2

r1

(

r − 2GM/c2

r − 2GM/c2
+

2GM/c2

r − 2GM/c2

)

dr,

=

[

r +
2GM

c2
ln(r − 2GM/c2)

]r2

r1

,

= (r2 − r1) +
2GM

c2
ln

r2 − 2GM/c2

r1 − 2GM/c2
.

Calculate the coordinate time taken for light to travel from Earth to Mercury (0.38AU from
the Sun) and back to Earth, assuming a purely radial path, and compare with the simple
formula ∆t = 2∆r/c.

The difference between the two estimates (multiplied by 2 for a 2-way trip) amounts to

4GM

c3
ln

r2 − 2GM/c2

r1 − 2GM/c2
≈

4GM

c3
ln

r2
r1

≈ 19.3× 10−6 sec .

In practice this so-called “Shapiro delay” is measured by bouncing radio pulses off Mercury
or Venus when they are on the opposite side of the Sun from us so that the radio waves pass
through the deep potential close to the Sun and delays of order 200 microseconds ensure.
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6.5. An observer is stationary at Schwarzschild radial coordinate r from a mass M . Starting from

Aα =
DUα

Dτ
=

dUα

dτ
+ Γα

βγU
βUγ,

show that the observer experiences an acceleration a given by

a =

(

1−
2GM

c2r

)−1/2 GM

r2
.

In which direction does this acceleration point?

The acceleration experienced by the observer is his or her proper acceleration, a, an invariant
which comes from the relation

a2 = − +A · +A.

Since the observer is stationary, U i = 0 (spatial components of four velocity are zero) and from
the invariant +U · +U = c2 we obtain

gtt
(

U t
)2

= c2.

Since for the Schwarzschild metric, gtt = c2(1− 2µ/r), we get

U t =

(

1−
2µ

r

)−1/2

.

This is time-independent and so dUα/dτ = 0, and we are left with

Aα = Γα
ttU

tU t =

(

1−
2µ

r

)−1

Γα
tt.

Using the Levi-Civita equation and using the fact that the Schwarzschild metric is diagonal, we
can write

Γα
tt =

1

2
gαα (gαt,t + gtα,t − gtt,α) .

Since the Schwarzschild metric is time-independent, this further reduces to

Γα
tt = −

1

2
gααgtt,α.

Since gtt is a function of r alone, the only non-zero term is

Γr
tt = −

1

2
grrgtt,r.

Using grr = 1/grr = −(1− 2µ/r) and gtt = c2(1− 2µ/r), we get

Γr
tt =

(

1−
2µ

r

)

GM

r2
.

We are left with

Ar =
GM

r2
,
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as the only non-zero component. This is a deceptively simple result, that depends upon the
choice of coordinates. However, it is clearly an outwardly-directed acceleration. This is the
acceleration provided by the floor for instance when you stand. The proper acceleration is thus

a2 = − +A · +A = −grr (A
r)2 =

(

1−
2µ

r

)−1 (GM

r2

)2

.

The equation given follows. Note the following: as one approaches the event horizon r → 2µ
and it becomes increasingly hard to keep stationary. For r < 2µ the result is non-physical
indicating that our assumptions have broken down. In this case it is the assumption of a
“stationary observer”: there is no such thing inside the event horizon.

6.6. In empty space T αβ = 0, and the field equations reduce to Rαβ = 0. A tensor that is zero in
one frame is zero in all frames. Thus there is no curvature in empty space. True or false?

False. The Ricci tensor is a contraction of the full Riemann tensor which need not be zero
even if the Ricci tensor is. If this were the case, the planet would move in straight lines.

6.7. No general method has been established for proving whether a given metric has a singularity.
A guide is to calculate scalar invariants.

Look up the coefficients of the Riemann tensor for the Schwarzschild geometry and hence
calculate the value of the scalar

RαβγδR
αβγδ.

Show that it is finite at the Schwarzschild radius but singular at r = 0.

TBD

Why is the Ricci scalar not a useful guide in this case?

Because it is zero.

6.8. How large would a sphere of material with the same density as air have to be for its Schwarzschild
radius to exceed its own radius? Compare the radius you estimate with the size of the solar
system.

One requires that

R =
2GM

c2
=

8πGρR3

3c2
,

so

R =

(

3c2

4πGρ

)1/2

.
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Setting ρ = 1kgm−3 gives R = 121,AU, about 3 times the radius of Pluto’s orbit.
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