5.1. In lectures it was stated that the covariant derivative of the metric was zero, Vg = 0.

(a) Use this to show the often-useful property that index-raising and lowering operations can
be moved through covariant differentiation, for example

Vap = (gavvﬂ{);g = 9arV"i8

Applying the product rule:
Vasp = (gcwvfy);g = Jars8V" + gary V5.
since Vg = 0, then gap.y = 0 and so
Vaig = gor V75

QED.

(b) Hence, given the relation
Vaipy = Varys = Rapy V)

show that

V& = V8% =R Ve

«
P By

a relation used in lectures when discussing the Riemann tensor.

Changing « to o and then multiplying by g*°
9 Voipy — 9% Vors = 9 R0,V
which from the above result becomes
V& = Vs = R,V
Setting V,, = g,. V7 then

V8y = Vg = gpo Rp, V7 = Roaﬂvvg

5.2. Calculation of the Riemann tensor in one of the most tedious in GR, however, it is not difficult
— in principle — and is worth doing for the simplest case of all, the 2-sphere of radius a, labelled
in terms of the spherical polar angles 6 and ¢ for which

ds®> = a* dO* + a*sin” 0 d¢?,

41



and the only non-zero connection coefficients are I'? 5, = —sin @ cos § and I'?49 = [, = cot 6
(see problem sheet 4).

Evaluate the Riemann and Ricci tensors, and thus show that the Ricci scalar R = —2/a®.

The (non-zero) metric coefficients can be read from the interval: geg = a*, gss = a®sin’#,
while g% = a=? and ¢*® = a=%sin"2 0. The covariant Riemann tensor is given by

Ragys = Gop D5y — T8y6 + 17851 6 — 175,17 55) -

Handout 4 shows that Raps is anti-symmetric in o and 3 and in vy and § leaving only compo-
nents related to Ropop. Thus

Rogos = 900 (D000 = D006 + 17061 00 — T700T754) ,
= (sin2 6 — cos® 6 + cot Osin 6 cos 0) ,
= a*sin?6.

The Ricci tensor is given by
Rgy = g% Raprs

which in this case reduces to
Ry = 9" Rogro + 9°° Ropro

Since the Ricci tensor is symmetric there are only 3 independent components in 2D which are

Rgg = 9% Rogoo + 9°° Rosoo
= —9” Roggo
= -1
Next
R = 9" Roopo + 9°” Ropos = 0,
and finally

R¢¢ = 990R9¢¢9 + g¢¢R¢¢¢¢ = — Sin2 0.

Thus the Ricci scalar is

=
I

gaﬂRaﬁ
= 909399 + g¢¢R¢¢

5.3. When developing a model of the Universe, Einstein added an extra term to the field equations
so that they read

1
RP — 5Rgaﬁ + Ag*P = kTP

where A is the “cosmological constant” and k = —87G/c?.
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Prove that these equations still satisfy the condition 77%# o= 0.

Taking the covariant derivative and contracting its index with «
af 1 af 1 aff af af
R;a - iR,ag - iRg e + Ag a KT el

where the Leibniz rule for covariant derivatives has been used, and also we have set R., =
R, since R is scalar. The covariant derivative of the metric is zero, and so

1
R} — §R,ag”‘5 = kT,

As shown in the lectures, the left-hand side is zero by design, and so the term in A makes
no difference to T, = 0, essentially because go‘ﬁ;a =0.

Show that the Ricci scalar R = —kT + 4A where, as in lectures, T' = g,5T°.

Contracting the field equations on o and B:
Q, 1 Q, (0% QY
9as B = 5 Rgapg™ + Mgapg®” = kgas T
Now gapg®® = 62 =4, so

R—2R+4A = kT,

50
R =—kT + 4A.

QED.

Hence show that

1
R = (Taﬁ — 2Tg“ﬁ> + Ag*?

Replacing the Ricci scalar in the field equations using the result above gives
1
R — 5 (ZKT +4A) g* + Ag®® = kT

after which a simple re-arrangement leads to the result here.

Therefore, by modifying the Newtonian limit calculation used in lectures to derive the
value of k, show that in the limit of slow motion and weak fields, the 00 component of
the field equations becomes

V2¢ = 4nGp — A2
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If we follow the derivation from lectures, then from the 00-cpt we derived
L oo s 1,
—C—QV gb:k(,oc — 5P )

This just need Ag™ = A (weak field) added to the RHS. This immediately leads to the
new form of the Newtonian limit.

Show then that the Newtonian potential at distance r from a spherically symmetric mass
M is
GM  Ac*r?

T T e

From Gauss’ theorem,
/V-(V(b)dV:]{V(b-ﬁdA,

where N is a unit outward pointing normal vector for each element of area dA covering a
closed surface. Taking a sphere of radius r centred on a point of spherical symmetry,

de) ‘ndA = 47?7“2@,
dr

since V¢ must everywhere point radially in such a case. Therefore

3
47rr2fi—f = / (47er — ACQ) dV = 4rGM — ACQﬂ,

3
* dé  GM 1
P — ZA?
dr r? 3’
Integrating
GM 1
¢ =—— — —Ac*r?,
T 6

ignoring the constant of integration.

What would be the physical effect of the cosmological constant term?

The gravitational field g = —V ¢, or radially

GM 1
+ gAczr.

9==- 2

Thus the cosmological constant acts as a repulsive force that gets stronger with radius.

What effect would it have upon the orbital periods of the planets?

The outer planets would need to move more slowly than expected to balance the gravita-
tional pull of the Sun and so would have longer periods than the standard P* o< a® scaling
from Earth’s orbital period.
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(g) In 1997 evidence was found in observations of supernovae that indicates that the cosmo-

-2

logical constant is not zero, but has a value of A = 1.2 x 107°2m~2. Estimate whether

this would have observable effects upon the orbits of the planets.

We can get an estimate of the magnitude of the cosmological term by comparing it to
GM/r?. To give it a chance, we will compare it in the outer solar system, 50 AU from
the Sun:

Ac?r Ac?r® 1.2 10772 x (3 x 10%) x (50 x 1.5 x 10'1)?

= =11x107"".
3GM/r2 ~ 3GM 3% 6.67 x 10-11 x 2 x 10%0 8

The cosmological constant is negligible on Solar system scales.

Note that an unezxplained deviation from Newton’s law of gravity has been observed in the
Pioneer probes which were tracked for many years after their launch in the early 1970’s.
This amounts to a constant extra acceleration towards the Sun of a = (8.74 £ 1.33) x
1079ms=2. It is not yet known whether this is some mundane problem or whether it
requires new physics. The calculations above make it clear that it is not the result of the
cosmological constant which has the wrong sign and is far too feeble.

5.4. Consider the term Rg®” where the Ricci scalar R = R*?g,3. Therefore

5.5.

Rg*" = R’ g,59°",

but we know that

Gapg™” = 4,

therefore

Rg®? = 4R*P.

What is wrong with these statements?

The line

Rgaﬁ — Ro‘ﬁgaggaﬁ,

was a dangerous error comitted by a fair number in the 2011 exam. You should never have
more than one identical contravariant (up) or covariant (down) index. The first two symbols
on the right contract with each other and are unrelated to the final symbol. The line should
have been written

Rgaﬁ — legwgaﬂ’

whereby the final “simplification” is seen to be entirely wrong.

Show that, in the absence of a cosmological constant, the field equations in free-space can be
written as:

R = .
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5.6.

We can say that T*? =0, so
1
RP — §Rg°‘6 =0.

However contracting with g,z gives
1
R = S Rgapg®” = —R =0,

and so the equations reduce to
R = 0.

QED.

Does this imply that free-space must be flat?

No, it does not. If it did, one could have no gravitational fields in free-space and the planets
would all fly off in straight lines from the Sun. The Ricci tensor R*® is not the Riemann
curvature tensor, Rapgys. If the latter is zero, we are in flat space, but it has more degrees of
freedom (20) than the Ricci tensor (10), so while Ryp.s = 0 implies that R*® = 0, the reverse
statement 1s not true.

* Starting from the connection coefficients of part (a) of Q4.8, show that the non-zero coeffi-
cients of the Ricci tensor for a spherically symmetric spacetime are:

A// A/ A/ B/ A/
fu = _QB+43<A+B)_TB’
N A A (A B\ B
" 24 4A\A B rB’

1 r (A B

= ——1 —_— _——
R B +QB<A B)’

R¢¢ = Rgg SiIl2 9,

where the dashes and double-dashes indicates first and second derivatives with respect to 7.

Set equal to zero (see previous question), these are the equations that lead to the Schwarzschild

metric with A(r) = ¢2(1 — 2GM/c?r), B(r) = (1 — 2GM/c?*r)~L.

The (non-zero) connection coefficients are Iy, = A'/2A, Ty, = A'/2B, I, = B'/2B, Ty =
—1r/B, I"yy = —(rsin?0)/B, T%. = 1/r, [, = —sinfcosf, [%,, = 1/r, [%35 = cot§. The
general formula for the Ricci tensor is

Rag =TPapp = TPapp + 10l pg = TPapl o
Thus starting with Ry we have, upon setting o =t and f =,

— loa loa
Ry =T, =174, + 1717 = TP T .
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The first term drops out because the metric is static and substituting in the connection (re-
membering that all partial derivatives wrt r become normal derivatives) we get
R _ d (A +A’A/+A’A’ A A’+B’+1+l
7 dr \2B 2A2B  2B2A 2B \2A 2B r r
A" A'B A <A’ A B 2)

~ "33 2B T3B

A 24 2B r

AT A A B 2
- _2B+2B<2A+2B_r>’

A// A/ A/ B/ A/
- _2B+43<A+B>_TB

The other terms follow in a similar manner.

5.7. A line parameterised by A and with tangent vector U obeys the relation
VU = fU,
where f = f()) is a function of A.

(a) Show that, by parameterising the line in terms of a new parameter y such that
d*u
dudA

=/

the line is a geodesic.

In component form the relation is

Pat o dilde_det
N2 ax dx T ane
The switch to p = () can be made using
d_dud
d\ d\du’
Setting the derivative du/d\ = 1/ and applying this relation then gives
//C;L (u’cg;) +T%, (1)’ ?:Zi = f”/ili'
Taking the derivative through the first term leaves

d?x® da? dav du'\ dz®
"2 / I

_— 1"04 _— = _— _
() <d,u,2+ ”Bvdu du) ,u< du) du

' d*p

dp  dpd
the equation reduces to the standard geodesic equation VU~,U” =0, where U is the tangent
vector of the line when parameterised by . The line is therefore a geodesic.

Therefore if

=/
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(b) Hence show that if f is constant then
p = Ae’ + B,

where A and B are constants.

Pu dx d (du) ldy dn(y)

dpd) — dpd\x \d\) ~ @ dx  dx
therefore the condition becomes
din(y)
ax /
Integrating
In(y') = fA+k,

where k is a constant, so

Z—/; =exp(fA+ k).

Integrating for a second time then
p=f"texp(fA+k)+F,

where k' is another constant. This is of the form

p = Ae’ + B,

as given in the question.

5.8. Show that the worldline which maximises the integral [ Ld\, where L = g,32°%”, and dots
denote derivatives with respect to A, satisfies the relations

i+ 12,0737 =0,

where the connection is given by the Levi-Civita relation.

Maximisation or minimisation of the integral leads to the Euler-Lagrange equations

d (0L oL 0
dx \9i>) Oz
and setting L = gg,i”37, one immediately obtains

o (9o @ + gpai?®) — gy,ad’i? = 0.

The chain rule gives
d dz® 0 5 0

AN Ay o opd
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5.9.

Applying this to the term in brackets gives
ga'yiv + gﬁafEﬁ + ga'y,éjfaftﬁ/ + gga,(si“a:ta — ggmai“ﬁdﬂ = O

Using the symmetry of the metric and relabelling dummy indices appropriately, this can be
written as

29arE" + (G, + YBary — 9pv.a) i = 0.
Multiplying by g°“and contracting on «
20787 + 9% (ar,p + Gsar — Goma) P787 = 0.

Finally re-labelling o to 0 and o to a, and dividing by 2:

. 1 5.
2+ 59 ° (967,86 + 985~ — 9Bv,5) i’ = 0.

Recognising the Levi-Civita connection we finally can write

i+ 19,3737 = 0.

Note that these are only the correct equations of motion if X is affine. Using L = \/gapt®a?
gives the right equations for any X\, but they only reduce to the simple form here when X is
affine (dL/d\ =0).

* Linearised GR: when gravitational fields are weak, one can find coordinates throughout

spacetime for which gag = 1ag + hap With |hes| < 1.

(a) Show that to first order in h, the Ricci tensor can be written as

1
Rop = 571”6 (hsy.ap + hapsy — Pary.os — Pop.ary) -

Starting from the Riemann tensor
Rﬂ/aﬂé = F’yaé,ﬂ - Fvaﬂ,é + Faaérﬂ{zfﬁ - Faaﬁr’ya&

The last two terms are second order in h and can tmmediately be neglected. From the
Levi-Chivita formula, the first term on the right-hand side is

1
]-—wa(s,ﬁ = 5970 (905,a + Yao,s — gaé,a)
7B

All the derivative terms are first-order in h, and therefore the metric outside the bracket
can be taken to be the Minkowski metric 07 and we find

1
Ios5 = 57770 (hos,ap + Paoss — hases) -

Stmilarly, the second term gives
1
Maps = 57770 (hop.as + Paoss — hap.os) -
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Taking the difference, using the commutativity of partial derivatives, we are left with

1
R o5 = 57770 (hos,ap + hapos — hasos — hopas) -

Contracting on v and 0 (i.e. change § to vy, and then re-labelling the dummy index o to
& gives the final expression.

Hence show that to first-order in h, the Ricci scalar is given by
R=0h—h* 4,

where h is the trace, i,e h = n*h,s, O is the d’Alembertian

and index raising and lowering involves n rather than g.

Contracting the formula for the Ricci tensor

1 (e}
= 5" P17 (Rsy.a8 + hasoy — havyss — Popay) »

where again we can write n rather than g given that we are only retaining first-order
terms. The first term can be written as

1 « 10¢
37 " hsy s = 37 I 950.hs,
1
= inaﬁaﬁaan&yh&f}/a
1
— Z0Oh
2

The second term gives the same quantity. The third and fourth terms can both be regarded
as two index rasing operations applied to the last two indices, and after some re-labelling,
the answer emerges.

Finally, show that the field equations can be written

167G
hag + Ohag — 0" (harsp + Popay) — (Bh — % 5p) Tlag = — o Las:

(This equation, which with a careful choice of coordinates can be greatly simplified, is
the starting point for the theory of gravitational waves.)

The field equations are
8rG

1
Raﬁ — §Rga5 = _?TQB

It is then just a case of putting the previous two formulae in, setting the gog = Nap to first
order, multiplying the whole thing by 2 and spotting that the first two terms of the Ricci
tensor can be re-written slightly.
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5.10. By working in inertial coordinates, prove the Bianchi identity, given, but not proved, in the
handouts:

Raﬂvé;u + Raﬂ/w;é + Raﬁﬁu;v =0.
[Note the way the last three indices are cyclicly permuted.]

This question shows the power of inertial coordinates which simplify the work enormously. In
inertial coordinates first-order derivatives of the metric gos, and therefore connection coeffi-
cients I'*g, are all zero. Therefore consider Ropys,,. Fully expanded this has a correction term
mvolving the connection for each of the first four indices. In inertial coordinates however these
all disappear and we are left with
Raﬁ’vé;u = Raﬁv&w

an enormous simplification. The Riemann tensor has four terms, two of which involve prod-
ucts of the connection. When we take the derivatives of these using the product rule, the
resulting terms will have the connection multiplying a derivative of the connection. However
again inertial coordinates means that the connection is zero, so these terms drop out as well.
Remembering too that the metric derivatives are zero we are left with

Ropysu = Gap (FPBMM - Fpﬁv,éu) .

This is a huge simplification but the price we have paid is that this is not a tensor relation: it
only holds in inertial coordinates. Interchanging indices to get the other two terms gives us the
three relations (the first simply a repetition of the equation above):

Rogysin = Gap (Fpﬂ&w - Fpﬁ%éu) )
Ropuris = Gap T pyps — Fpﬁu,vﬁ) )
Ragsuy = Gap T80y — I popy) -

If these are added then using the symmetry on the two lower indices of the connection and the
commutativity of partial differentiation (symmetry in the two indices after the commas), it is
easily seen that all terms cancel and thus

Rapysin + Rapuyis + Rapopy = 0

Now this is a tensor relation because the LHS is clearly a tensor and 0 represents the most
trivial tensor of all. So this is a covariant relation that holds in all coordinates. Very neat you
have to admit!

5.11. Prove that the Ricci tensor is symmetric.

The Ricci tensor is defined by
Raﬁ = gMDR#aﬂy.

The symmetry/anti-symmetry relations of the Riemann tensor are
Raﬂ’yé = _R,Ba'y<57
Raﬁ’yé = _RQB(S’yv
Raﬁ76 = R’yéaﬁ-
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5.12.

5.13.

Applying these and also using the symmetry of the metric and suitable component re-labelling
shows that
Raﬁ = g#VR,u,aBVv
guuRﬁy,uon
= gijVﬂauu
= gyuRuﬁauv
ngRpﬂow;
= Rﬁav

QED.

Show that in one-dimension there is no Riemann tensor while in two dimensions it has only
one independent component.

The only component is Ry111 for a coordinate labelled with index 1. The anti-symmetry in the
last two indices proves that this must =0, QED.

In 2 dimensions there are potentially 2* = 16 components which have indices 1111, 1112,
1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 2222. The
anti-symmetry relations

Raﬁ’y(ﬁ = _Rﬁa’y67
Raﬁ’y& = _Raﬂﬁ’yv

mean that we can eliminate all terms with a repeated index in the first or last pair of indices
and we are left with just four non-zero terms with indices 1212, 1221, 2112, 2121. However
the above two relations show all these terms are the same, give or take a sign, so there is only
one independent component. This single number is effectively what Carl Friedrich Gauss came
across in his “Theorema Egregium” (Remarkable Theorem) for the curvature of a 2D surface.
He found it remarkable that his formula only involved lengths within the surface despite his
setting up the problem from a 3D wviewpoint. It took the work of Riemann 30 years later to
extend this work to more than 2 dimensions.

* Show that the number of independent components of the Riemann tensor in N dimensions
is given by

1

—N?*(N?—1).

73V )

There are a possible N* combinations of 4 indices (256 for N = 4), but the number of inde-
pendent values is severely limited by the symmetry relations:

Raﬁ’y& = _Rﬁa’y57
Raﬂ’yé = _Raﬁﬁ'yv
Raﬁ’yé = R’yéaﬁv
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and
Raﬁwé + Ravéﬂ + Roaiﬁw = 0.

The first two show that Riemann tensor in antisymmetric in the first and last pairs of indices
and thus there are N' = N(N — 1)/2 different combinations of each pair, giving a potential
(N")? components, 36 for N = 4. However the third relation shows symmetry between the first
and last index pairs and thus there are

%N’(N’ +1) = % (N(NQ_ 1)) (N(NQ_ D 1) - éN(N —1)(N? = N +2),

possible values, which gives 21 for N = 4. We finally need to include the fourth constraint.
One has to be careful not to overcount the constraints from this given the other symmetries.
For instance, consider the case of 8 = «, then

Raa'yzs + Raﬁyéa + Ra(safy =0.

Anti-symmetry on the first pair of indices removes the first term, and anti-symmetry on the
second pair of indices allows us to reverse the indices on the second pair of the second term to
write

Raéa'y = Rcwcu;-
But this is just the third of the symmetry relations, so we have learned nothing new. Therefore
we must require « # . Similar reasoning shows that all of the indices must be different.
The symmetries mean that the precise order of the indices is immaterial, so the number of
constraints is the number of ways of picking 4 objects from N, regardless of order:

N!
4N —4)
Thus the final number of independent coefficients is given by
1 1 1
gN(N—1)(N2—N+2)—ﬂN(N—l)(N—Q)(N—S) = ﬂN(N—1)(3N2—z’)J\f+6—N2+5N—6).

We are left with

1 1
— N(N —1)(2N? +2N) = —N?*(N? -1

QED. For N = 4, this gives 20 as quoted in lectures.
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6.1. The non-zero coefficients of Einstein’s field equations in empty space for a spherically symmetric
metric of the form

ds* = A(r) dt® — B(r) dr® — r* (¢ + sin* 6 d¢*)

are as follows:

Ro = A A (AL B A o
" T 9B "4B\A ' B rB
A// A/ A/ B/ B/
_ a4 _4ara by b 1
R = 53 4A_<A_+_B> B (10
1 r (A B
Roy = B—1+2B<A—B>O. (11)

(The R4y component carries the same information as the Rgy component.)

(a) By adding Bx Eq. 9 to Ax Eq. 10 show that AB = «a, a constant.

Carrying out the manipulation indicated, the first two terms of each equations cancel

leaving
BA"  AB"
rB rB
or J

hence AB = «, a constant. QFED

(b) Hence use Eq. 11 to show that d(rA)/dr = «, and so

AW)—a<1+f>,

where k is another integration constant.

Setting B' = —BA'JA and B = a/A, then Eq. 11 reads
Ay
a 20\ A A) 7
or

d
A A=a=—(rA
+r o dr(r ),

A:a(lJrk),
T

where k is another integration constant.

and finally
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6.2.

6.3.

(c) Finally, by considering the weak field limit, justify the Schwarzschild metric.

In weak fields the dt* coefficient becomes
2
Alr)=¢? <1 + ¢) ;

and setting the Newtonian potential ¢ = —GM /r, we deduce o = ¢*, k = —2GM/c?.

With the cosmological constant, the field equations in empty-space become
R = Ag*P.

Write down the modified versions of Eqs 9, 10 and 11 from Q6.1, and repeat the working to
show that the metric becomes

2GMAr2> dt2<12GMAr2

c2r 3 c3r 3

-1
ds? = ¢ <1 — > dr? — r? (d92 + sin? 0 d¢2) .

The equations become

B’ A’
_2B+43<A+B>_T’B — Agy=AA

A A (A B B
<+> - = Agrr:*ABa
rB

2A 4A\A B
1 r (A B 9
B_1+2B<A_B> = Agop = —Ar*.
The same procedure as before then gives
d
—(AB) =

again, so AB = « still. Then the second part gives

d
%(T’A) =a(1-Ar?),
which on integration yields
Ar?
TA =al|lr+ k — ? .

As before we know that for large v (but not so large that the cosmological constant matters),
A= A(1+2¢/c?), so as before a = ¢ and k = —2GM/c* and therefore the modified version
of the metric follows straightforwardly.

Person A, stationary at r = r4 from a mass M (Schwarzschild radial coordinates), regularly
sends pulses of light in the radial direction to person B who is stationary at r = rg > ra.
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(a) Show that along the path of the light-pulse

dr

dt=— T
‘T oaMer

Since the path is radial (and by symmetry it must be radial the whole way from A to B),
then df = d¢ = 0 and we have

-1
ds® = ¢ (1 - 2GM> dt® — (1 - 2GM> dr?.

c2r c2r
Since the path is null ds*> = 0, and thus

dr

dt=+—— 0
‘ 1 — 2GM/cr

Clearly the positive root applies if the light travels outwards.

(b) Show that each pulse take the same coordinate time to travel from A to B.

This is one of those so-obvious-you-miss-it questions. The time is

c(tn —ta) /TB dr
B —lta) = T o As/.9.0
vy 1—2GM/c*r

which is always the same since it contains no time dependence on the right-hand side.

(¢) Hence show that, if A transmits pulses at rate v4, then B receives them at rate vg where

2 <1 —QGM/CQTA>1/2

N 1 —-2GM/c*rg

The previous result shows that Aty = Atp where Aty is the coordinate time between
pulses sent by A, and Atg is the coordinate time between pulses received by B. However
for both A and B, dr = df = d¢p =0, so

S0

Aty Avg  [(1-2GM/Pra\"? Aty
ATB_AVA N 1—2GM/027“B AtB,

and given the equality of the coordinate time increments, the result follows.

56



(d) What is the physical meaning of the equation of the previous part?

As A is closer to the mass M, vg/va < 1, and B must deduce that A’s time progresses
more slowly than his/her own time. This is gravitational time dilation.

(e) By how much would the readings of two clocks differ after one year, if one was on the
surface of Earth while the other was far from the Earth but stationary with respect to it,
assuming that they were initially synchronised?

The clock on Earth would tick at

GMpg

V1—2GMg/Rp ~1— .

the rate of the clock in space, so after 1 year it will have fallen behind by

M .81 103
G EAt:gREAtfgég x 6370 x 10

R 5 = (2.0979 x 10°)2 X 365 x 24 x 3600 = 0.022 sec.
C E C .

(f) The spectrum of the surface of a white dwarf of radius R = 6000 km, mass M = 1Mg
shows strong absorption at the wavelength of Ha, which has laboratory rest wavelength
A = 656.276 nm.

i. What wavelength would be measured on Earth, assuming that the white dwarf is
stationary with respect to Earth?
[You may ignore any gravitational effects due to Earth.]

Setting r4 = 6000 km and rg = oo,

A
R (1 — QGM/CQTA)1/2 = (1
VA )\B

_ 2x6.67x 107" x 2 x 10%
(3 x 10%)2 x 6 x 106

1/2
) = 0.99975293,

which gives Ap = 656.438 nm.

ii. An astronomer takes a spectrum of this white dwarf and mis-interprets the offset
wavelength as a Doppler shift. What spurious velocity along the line-of-sight would
the astronomer measure?

The first-order Doppler shift equation is
A= (142,
c

where v is the component of velocity along the line-of-sight. Hence
A
v=c < — 1) = 75kms .
Ao

o7




(g) Which has a more significant effect upon the clocks in a typical commercial air flight (v ~
900kmhr ', h & 10,000 m), the speeding up of time from being at a higher gravitational
potential than the ground or the slowing down from special relativistic time dilation?

Gravitational time dilation factor 1+gh/c?, SR Lorentz factor (1—v?/c?)Y/? ~ 1—v?/2¢%.
For this case

gh 9.8 x 10* i
gr _ 91X U110
2~ (3x 1092 S

while )
v? (900 x 10%/3600)? B

—13
22 = ax(@Bxiore oo xI

so the gravitational effect will win out overall.

6.4. Obtain an expression for the coordinate time taken for light to travel radially from r; to ry in
Schwarzschild coordinates.

From the question above:

2 dr
=) = | T osearer

B /Tz rdr
)y, T—=2GM /e

B /T2 r72GM/02+ 2G M/ c? p
 Jo \r—2GM/c®  r—2GM/c> "

2GM 2
- [7“ + C; In(r — QGM/CQ):| ,
2GM | 1y —2GM/c?

(rz =) + c? 117"1—2GM/C2

Calculate the coordinate time taken for light to travel from Earth to Mercury (0.38 AU from

the Sun) and back to Earth, assuming a purely radial path, and compare with the simple
formula At = 2Ar/c.

The difference between the two estimates (multiplied by 2 for a 2-way trip) amounts to

AGM | 19 —2GM/c*  AGM | 1o _6
- ~——In— =193 x 10 )
c3 . ry — 2GM/c? c3 . T % sec

In practice this so-called “Shapiro delay” is measured by bouncing radio pulses off Mercury
or Venus when they are on the opposite side of the Sun from us so that the radio waves pass
through the deep potential close to the Sun and delays of order 200 microseconds ensure.
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6.5. An observer is stationary at Schwarzschild radial coordinate r from a mass M. Starting from
_ DU~ dU*
- Dr  dr

show that the observer experiences an acceleration a given by

A~ + 5, UPU7,

< 2GM>1/2 GM
a=|(1-— .

c3r 72

In which direction does this acceleration point?

The acceleration experienced by the observer is his or her proper acceleration, a, an invariant
which comes from the relation

a?=—A-A
Since the observer is stationary, U = 0 (spatial components of four velocity are zero) and from
the invariant U - U = ¢® we obtain
t) 2 2
it (U) =cC.
Since for the Schwarzschild metric, g, = (1 —2u/1), we get

9\ ~1/2
Ut = <1 - “> .
T

This is time-independent and so dU®/dT = 0, and we are left with

r

92 -1
Aa - FattUtUt - (1 - ’u> Fatt.

Using the Levi-Civita equation and using the fact that the Schwarzschild metric is diagonal, we

can write 1
Iy = igaa (Gatt + Gtat — Gita) -
Since the Schwarzschild metric is time-independent, this further reduces to
1
I = —ig‘mgtt,a.

Since gy 1s a function of r alone, the only non-zero term is

1

Iy =— §grrgtt,r-

Using " = 1/grr = —(1 = 2p1/7) and gy = *(1 —2p/7), we get

2 GM
Frtt - < - M) .

r 72

We are left with
GM

r2

A" =

)
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6.6.

6.7.

6.8.

as the only non-zero component. This is a deceptively simple result, that depends upon the
choice of coordinates. Howewver, it is clearly an outwardly-directed acceleration. This is the
acceleration provided by the floor for instance when you stand. The proper acceleration is thus

-1 2
a2 = —fY' g: _grr (AT)Z - (1 - 2M) (GM> .

T 72

The equation given follows. Note the following: as one approaches the event horizon r — 2u
and it becomes increasingly hard to keep stationary. For r < 2u the result is non-physical
indicating that our assumptions have broken down. In this case it is the assumption of a
“stationary observer”: there is no such thing inside the event horizon.

In empty space T = 0, and the field equations reduce to R*” = 0. A tensor that is zero in
one frame is zero in all frames. Thus there is no curvature in empty space. True or false?

False. The Ricci tensor is a contraction of the full Riemann tensor which need not be zero
even if the Ricci tensor is. If this were the case, the planet would move in straight lines.

No general method has been established for proving whether a given metric has a singularity.
A guide is to calculate scalar invariants.

Look up the coefficients of the Riemann tensor for the Schwarzschild geometry and hence
calculate the value of the scalar
Reoprs RO,

Show that it is finite at the Schwarzschild radius but singular at r = 0.

TBD

Why is the Ricci scalar not a useful guide in this case?

Because it is zero.

How large would a sphere of material with the same density as air have to be for its Schwarzschild
radius to exceed its own radius? Compare the radius you estimate with the size of the solar
system.

One requires that
_ 2GM  8nGpR®

c2 3¢z

o 1/2.
ArGp
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Setting p = 1kgm™ gives R = 121, AU, about 3 times the radius of Pluto’s orbit.
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