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PX436, General Relativity Problems with answers

1.1. Calculate the radius at which the bending of light as calculated from the equivalence principle
would keep it in a circular orbit around a mass M .

From lectures, over a distance x in a gravitational field g, light is deflected down by an amount

h =
gx2

2c2
.

Consider the following:

A basic theorem of the geometry of circles gives

x2 = (2R− h)h ≈ 2Rh,

for small h. Therefore

h =
g(2Rh)

2c2
,

so

gR =
GM

R
= c2,
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or

R =
GM

c2
.

Alternatively, and more easily, but not immediately so obviously, balance centripetal accelera-
tion and gravity

v2

R
=

c2

R
=

GM

R2
,

which leads to the same result, exactly as Newton would have deduced. This is a nice example
where the Newtonian calculation fails and we shall see later in the course that the correct
answer is R = 3GM/c2. The equivalence principle alone as applied here does not give the right
answer either; full GR is required to extend the calculation of light-bending over large regions
in non-uniform fields.

1.2. The diagram below shows the design of a perpetual motion machine sent by an inventor called
H.Bondi to a patent office in Switzerland where a certain A.Einstein works:

Atoms attached to a movable belt absorb photons at the top of their travel and emit them at
the bottom, with the photons directed back to the top-most atoms where they are absorbed.
When an atom absorbs a photon of energy E = hν its mass increases by ∆m = hν/c2 hence
the excited atoms (filled circles) on the right of the belt always outweigh the de-excited atoms
(empty circles) on the left and hence perpetual clockwise motion results which can solve all
the world’s energy problems . . .

What flaw does Einstein spot in this machine in addition to the evident violation of the first
law of thermodynamics?

There is an implicit assumption that the photon can be re-cycled with no change in energy, but
of course it loses energy as it climbs the gravitational potential as shown from the equivalence
principle in lectures. In fact, the change in frequency is given by ∆ν = −ν0∆φ/c2, where ∆φ is
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the change of gravitational potential that the photon undergoes. This corresponds to a change
in energy of

∆E = −
hν0
c2

∆φ = −∆m∆φ,

compensating for the energy extracted from the heavier atoms.

1.3. Why can there be no equivalent of Einstein’s equivalence principle for electric rather than
gravitational fields?

Because the ratio of electric charge to inertial mass is variable. Thus not all objects have the
same acceleration in an electric field and there is no unique “free-fall” frame.

1.4. It is important to be confident with the summation convention and index manipulation. Here
are a few practice problems:

(a) Show that
AαBα = AβBβ.

Writing out the left side

AαBα = A0B0 + A1B1 + A2B2 + A3B3.

Since the right-hand side is independent of the dummy index α, the relation is obvious.

(b) What is the value of δαα?

δ0
0
+ δ1

1
+ δ2

2
+ δ3

3
= 4.

(c) Show that in SR
~A · ~A =

(

A0
)2

− AiAi,

where ~A is an arbitrary four vector and in this case the summation convention applies to
the last term even though both indices are raised.

By definition
~A · ~A = ηαβA

αAβ.

Substituting the values of the SR metric, the relation follows.

3



(d) If Aαβ is symmetric (Aαβ = Aβα), and Bαβ is anti-symmetric (Bαβ = −Bβα), show that
AαβB

αβ = 0.

From the relations
AαβB

αβ = (Aβα)
(

−Bβα
)

.

But α and β are dummy indices which are summed over and we can simply re-label so
that they are swapped giving

AαβB
αβ = −AαβB

αβ.

This implies that
AαβB

αβ = 0,

QED.

(e) Show that, if Aαβ is symmetric but Bαβ is arbitrary, then

AαβB
αβ = AαβC

αβ,

where

Cαβ =
1

2

(

Bαβ +Bβα
)

.

Proceeding as with the previous part but without initially swapping the indices of Bαβ one
can show

AαβB
αβ = AαβB

βα.

Adding these two and dividing by 2 gives the expression asked for.

(f) How many independent components are needed to specify Aαβ when it is (i) arbitrary,
(ii) symmetric and (iii) anti-symmetric in 3, 4 and N dimensions?

(i) 9, 16, N2. (ii) Symmetry implies Aαβ = Aβα. There are N(N − 1)/ such conditions,
so the total number of components = N2−N(N − 1)/2 = N(N +1)/2, which gives 6 and
10 components for 3 and 4 dimensions. (iii) Anti-symmetry implies the same N(N−1)/2
conditions plus N conditions of the form A00 = 0. This gives N(N − 1)/2 components
giving 3 and 6 components respectively.

(g) The “Christoffel symbols”, Γα
ρσ, are symmetric in the indices ρ and σ. How many

independent components are there in four dimensions?

From the previous part, there are 10 different combinations of ρ and σ for any one value
of α. Since there are four values of α, there are 40 independent Christoffel symbols.
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1.5. If t and x transform according to

ct′ = α(ct) + βx,

x′ = γ(ct) + δx,

where α, β, γ and δ are constants, such that the interval s2 = (ct)2 − x2 is preserved, show
that α2 − β2 = 1, γ = β and δ = α.

(ct′)
2
− (x′)

2
=

(

α2
− γ2

)

(ct)2 + 2(αβ − γδ)(ct)x− (δ2 − β2)x2.

Therefore

α2
− γ2 = 1,

αβ = γδ,

δ2 − β2 = 1.

Squaring the second of these equations and using the other two

α2β2 =
(

α2
− 1

) (

β2 + 1
)

,

thus
α2

− β2 = 1.

Since α2− γ2 = 1, then γ = ±β, and from αβ = γδ then δ = ±α, with the sign being the same
in each relation. For continuity, we take the positive sign so δ = α, γ = β, and the relations
are proved.

Show that these relations are consistent with standard LTs.

For the standard LT, set α → γ, and β → −γβ, where γ = 1/
√

1− β2 (where γ and β are
not to be confused with the constants of the linear transform). Thus

α2
− β2 =

1

1− β2
−

β2

1− β2
= 1.

The other relations are obviously satisfied.

1.6. Use the component transformation definition of vectors to show that if ~A and ~B are four-vectors
then the quantities V α defined by V α = Aα +Bα also transform as a four-vector enabling one
to write ~V = ~A+ ~B.

Since ~A and ~B are four-vectors then we can write

Aα′

= Λα′

βA
β,

Bα′

= Λα′

βB
β.
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Therefore

Λα′

βV
β = Λα′

β

(

Aβ +Bβ
)

,

= Λα′

βA
β + Λα′

βB
β,

= Aα′

+Bα′

.

QED.

1.7. The four-velocity in Special Relativity (SR), ~U , has components

Uα =
dxα

dτ
= γ(c, ~v),

where in the first representation xα represent the coordinates of events in the usual represen-
tation with x0 = ct, x1 = x, x2 = y, x3 = z, and τ is the proper time, while in the second, γ
is the Lorentz factor and ~v the three-velocity.

(a) Why, given the properties of dxα and τ , is ~U “clearly” a four-vector?

Since ~x is a four-vector then d~x is also a four-vector. Since τ is a scalar, then so too is
dτ , and therefore ~U = d~x/dτ is a four-vector.

(b) Show that in any reference frame

~U · ~U = ηαβU
αUβ = c2,

where ηαβ is the SR metric as defined in lectures.

~U ·~U is a frame-invariant scalar, so we need only work out its value in one frame. Choosing
the rest frame ~U = (c, 0, 0, 0), the answer follows directly.

(c) Hence show that
~U · ~A = 0,

in all frames, where the four-acceleration ~A is defined by

Aα =
dUα

dτ
.

This is just a matter of differentiating with respect to proper time τ (not t because that
would not be frame-invariant):

d

dτ
~U · ~U =

d

dτ
ηαβU

αUβ,

= ηαβ
dUα

dτ
Uβ + ηαβU

αdU
β

dτ
,

= 2ηαβU
αdU

β

dτ
,

= 2~U · ~A,
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where ~A = d~U/dτ . In the above set of equation line 2 follows from line 1 since the ηαβ are
constant in SR; line 3 follows from line 2 after swapping α and β and using ηαβ = ηβα.

Since ~U · ~U = c2, its derivative = 0 and the result follows.

(d) Show that ~A is given by
~A = γ(γ̇c, γ̇~v + γ~a),

where ~a is the 3-acceleration and the dots indicate differentiation with respect to t.

We can write ~U = γ(c, ~v), and since dτ = dt/γ, we have

~A = γ
d~U

dt
.

Since

dγ~v

dt
= γ̇~v + γ

d~v

dt
,

= γ̇~v + γ~a,

the result follows straight-forwardly.

(e) An object undergoes acceleration a in the x-direction as measured in its instantaneous
rest frame (IRF). Show that in a frame in which it travels with speed v in the x-direction,
it has an acceleration

a′ = γ−3a,

where γ = γ(v) is the Lorentz factor.

From part (1.7d) we can write ~A = (A0,~a) for the IRF, where also ~U = (c,~0). Since
~U · ~A = 0, we must further have A0 = 0, so ~A = (0,~a) = (0, a, 0, 0) in this case. Applying

Lorentz transforms and remembering the general form of ~A from part (1.7d) we have for
the time component:

γγ̇c = γ(0 +
v

c
a),

so γ̇ = va/c2 (remembering that we are transforming from a frame travelling at speed v
relative to the frame we are transforming to, hence the + sign on the second term).

Similarly, for the x component,

γγ̇v + γ2a′ = γ
(

a+
v

c
× 0

)

,

so using γ̇ = va/c2,

γ
v2

c2
a+ γ2a′ = γa,

and remembering that 1− v2/c2 = γ−2, the result follows.
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(f) Starting from rest with v = t = τ = 0 and x = c2/a, an object undergoes constant
acceleration a in the x-direction in its IRF. Integrate the result of part (1.7e) to show
that:

v = c tanh
aτ

c
,

γ = cosh
aτ

c
,

x =
c2

a
cosh

aτ

c
,

t =
c

a
sinh

aτ

c
,

where τ is the proper time, i.e the time measured by clocks travelling with the object.

The equation a′ = γ−3a can be written as

dv

dt
=

a

γ3
,

but as suggested by the form of the answers, it is more easily integrated in terms of proper
time for which since dt = γ dτ ,

dv

dτ
=

a

γ2
,

and so
∫ v

0

dv

1− v2/c2
=

∫ τ

0

a dτ.

Setting v = c tanh z, then 1 − v2/c2 = cosh−2 z, while dv = c cosh−2(z) dz, so we are left
with

cz = aτ,

and therefore

v = c tanh
aτ

c
.

The Lorentz factor γ = (1− v2/c2)−1/2 = cosh aτ/c follows immediately. Then
∫

dt = t =

∫

γ dτ =
c

a
sinh

aτ

c
,

follows straightforwardly. Finally the distance is obtained from integration of

dx

dτ
= γ

dx

dt
= γv,

or
∫ x

c2/a

dx =

∫ τ

0

c sinh
aτ

c
dτ,

which gives

x−
c2

a
=

c2

a
cosh

aτ

c
−

c2

a
,

and so the result for x is proven as well.
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(g) From the previous part, obtain a single equation relating x and t and hence draw the
worldline of the object in a spacetime diagram.

Using cosh2 x− sinh2 x = 1 gives

x2
− (ct)2 =

(

c2

a

)2

.

This gives a hyperbola, which crosses the x-axis vertically and asymptotes to the line
x = ct.

In what sense does the line x = ct act as a “horizon” for the object?

Any event above this line, i.e. with ct > x can never be seen by the object because the
object’s worldline will never cross into its “future”. The line x = ct is an “event horizon”
beyond which the object can never see.

(h) ∗ Use the result of the previous part to calculate the shortest time it would take a
spacecraft to travel to the centre of our Galaxy 25,000 light-years from Earth and back
again assuming that it could maintain a constant IRF acceleration (“proper” acceleration)
of one g at all times and that it comes to rest, however briefly, at the Galactic centre.
Calculate the time as reckoned by an observer on Earth and on the spacecraft.

Shifting the origin of x so that it starts at x = 0 gives

x =
c2

a

(

cosh
aτ

c
− 1

)

.

Setting a = g and x = cT where T is the distance in terms of time, we have

cosh
gτ

c
= 1 +

gT

c
.

The journey will be quickest if the spacecraft accelerates at g until the halfway point, then
decelerates at g to come to rest at the Galactic centre, and then does the reverse. So we
want to calculate the time taken to get to the half-way mark for which T = 12,500 years,
and then multiply the answers by a factor 4. This gives

τ = 39.4 years.

The time taken according to the Earth-based observer comes from

t =
c

a
sinh

aτ

c
,

which with a bit of work can be shown to be

t =

(

T 2 + 2
cT

g

)1/2

≈ T +
c

g
.
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c/g = 0.97 years, so the total time according to Earth is ≈ 50,004 years.

In other words the time taken to approach the speed of light adds surprisingly little to the
round-trip time compared to the 50,000 years that light would take, and it is feasible in
principle to get to the centre of the Galaxy and back within a human lifetime (as far as
the astronauts are concerned) without requiring unpleasantly large accelerations.

(i) ∗ The spacecraft of the previous part is powered by a “photon drive” in which matter/anti-
matter annihilation produces gamma-rays which are collimated and sent into space to
provide the acceleration (. . . if only!). Calculate the minimum mass of the rocket when it
leaves Earth required to end up with mass m on its return.

In the IRF, if the mass changes from m to m+ dm, while the speed changes from 0 to dv
due to the emission of photons, then conserving momentum

0 = (m+ dm)dv + cdm,

so
dm

dτ
= −

gm

c
.

Therefore
m = m0e

−gτ/c.

This reduction factor is suffered 4 times over, and the end result is that m = 10−17.6m0.
Thus to arrive back with a 1 ton spacecraft would require a bit of a monster of mass
m0 = 4 × 1020 kg at launch. When the engines first power up they would have a power
roughly 3000 times that of the Sun and would make short work of vapourising Earth . . . not
a very practical possibility.

1.8. In a frame S an observer has four-velocity ~U while a particle has four-momentum ~P . Show
that the energy of the particle E that the observer would measure (i.e. not the energy as
measured in S) is given by

E = ~P · ~U

In the rest frame of the observer ~U = (c, 0, 0, 0) while ~P = (E/c,p). Hence the equation given
is obviously true in this frame, and since it is manifestly Lorentz invariant, it is true in all
other frames.
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2.1. Use the momentum four-vector ~P = m~U where ~U is the four-velocity to obtain the well-known
formula E2 − p2c2 = m2c4 where E is the energy and p the momentum of a particle of (rest)
mass m.

The four-momentum can be written as (E/c,p) so that the invariant norm is then

~P · ~P = ηαβP
αP β = (E/c)2 − p2.

The actual value is easiest to calculate in the rest frame of the particle in which E = mc2,
p = 0, and the result follows.

2.2. The four-momentum of a photon of angular frequency ω and wave-vector k is given by ~P =
h̄(ω/c,k).

(a) What sort of vector (timelike, spacelike, null) is ~P?

~P · ~P = ηαβP
αP β = h̄((ω/c)2 − k2) = 0,

so it is a null vector (since c = ω/k), as it should be since it points along the photon’s
worldline. Note that one cannot define a four-velocity for photons in the same way as for
massive particles since dτ = 0 for photons.

(b) Obtain an expression for the Lorentz scalar ~X · ~P where ~X = (x0, x1, x2, x3). What is its
physical interpretation?

~X · ~P = ηαβX
αP β = h̄(ωt− k · x),

remembering that x0 = ct. This quantity is the phase of the wave, which one expects to be
invariant since e.g. a node of an EM wave in one frame where the electric and magnetic
fields are zero should also be a node in any other frame and the location of nodes is defined
by the phase.

(c) A photon travels in the x–y plane in a frame S at angle θ measured anti-clockwise from
the x-axis. Show that, in a frame S ′ moving relative to S at speed v in the positive
x-direction, the angle is measured as θ′ where

cos θ′ =
cos θ − β

1− β cos θ
,

where β = v/c.
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Apply the Lorentz transform to the wavevector (ω/c, k cos θ, k sin θ, 0). In the standard
orientation defines, kz′ = kz = 0 so the photon will travel in the x′–y′ plane and the
wavevector in S ′ can therefore be written (ω′/c, k′ cos θ′, k sin θ′, 0), and therefore









ω′/c
k′ cos θ′

k′ sin θ′

0









=









γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

















ω/c
k cos θ
k sin θ

0









.

Therefore

ω′

c
= γ

(ω

c
− βk cos θ

)

,

k′ cos θ′ = γ
(

k cos θ − β
ω

c

)

,

k′ sin θ′ = k sin θ.

Remembering that ω/k = ω′/k′ = c (speed of light constant), and dividing the second
equation by the first we get

cos θ′ =
k cos θ − βω/c

ω/c− βk cos θ
,

=
cos θ − β

1− β cos θ
.

The change in angle is known as “aberration” and causes a ±20 arcsecond variation in
the positions of astronomical objects as Earth orbits the Sun first found by James Bradley
in 1725.

2.3. Which, if any, of the following are valid tensor relations?

(a) Aα +Bα

Invalid. Cannot add tensors with differing numbers of covariant and contravariant indices
since they don’t transform in the same way.

(b) Rα
βA

β +Bα = 0

Valid.

(c) Rαβ = Tγ

Invalid. Two indices on the left, one on the right means that the left and right cannot
transform in the same way and the indices don’t match at all either.

12



(d) Aαβ = Bβα

Valid. Indices need not appear in the same horizontal order.

2.4. Prove by applying the transformation rules that, if Pα and V α are components of tensors, then
PαV

α is a scalar.

The individual parts transform as follows

Pα′ = Λβ
α′Pβ,

V α′

= Λα′

γV
γ,

therefore
Pα′V α′

= Λβ
α′Λα′

γPβV
γ.

The two LTs represent the transform from S to S ′ (second one) followed by S ′ to S (first one),
which gives the identity δβγ , so

Pα′V α′

= δβγPβV
γ = PβV

β.

QED.

2.5. Just like vectors, one-forms have a coordinate-independent meaning, so a given one-form p̃ can
be written in frames S and S ′ as p̃ = pαω̃

α = pα′ω̃α′

. Use this and reasoning similar to that of
the lectures to deduce that the basis one-forms transform as

ω̃α′

= Λα′

β ω̃
β.

We know that
pα = Λβ′

αpβ′ ,

so
Λβ′

αpβ′ω̃α = pα′ω̃α′

.

Re-labelling on the left-hand side, β′ → α′, α → β, and collecting up coefficients of pα′ we get

(

ω̃α′

− Λα′

βω̃
β
)

pα′ = 0.

For this to be true for arbitrary pα′, the term in brackets must be zero, QED.

2.6. Tensors are linear in all of their arguments so that e.g.

T (α ~A+ β ~B, p̃) = αT ( ~A, p̃) + βT ( ~B, p̃),
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and
T ( ~A, αp̃+ βq̃) = αT ( ~A, p̃) + βT ( ~A, q̃),

where α and β are constants.

Use these and the definition of tensor components from lectures to show that if ~v = vα~eα and
p̃ = pαω̃

α then
T (~v, p̃) = Tα

βvαpβ,

T (~v, p̃) = T (vα~eα, pβω̃
β),

= vαT (~eα, pβω̃
β),

= vαpβT (~eα, ω̃
β),

= vαpβTα
β,

QED. Here line 2 follows from line 1 by the first relation given, while the next line follows from
the second relation. The final line follows from the definition of tensor components given in
lectures.

2.7. There is no need to distinguish between “covariant” and “contravariant” indices in Cartesian
coordinates, which is why until now you will rarely, if ever, have encountered one-forms. Show
that in such coordinates the one-form Ã dual to the vector ~A has components given by Aα = Aα.
[Hence Cartesian tensors are usually written entirely with subscripted indices.]

The line element in Cartesian coordinates is given by dl2 = dx2 + dy2 + dz2, so the metric
becomes ηαβ = δαβ, therefore applying the index-lowering property of the metric tensor

Aα = ηαβA
β = δαβA

β.

The δαβ simply selects terms for which β = α, and so Aα = Aα.

2.8. Write down an expression involving the metric tensor that converts a tensor from the form
T α

βγ
δ into the form Tα

βγ
δ.

Tα
βγ

δ = ηαµη
βνηγρηδσT

µ
νρ

σ.

2.9. As ηαβ is a tensor, it must obey the transformation rule

ηα′β′ = Λγ
α′Λδ

β′ηγδ.
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By writing out this transform as a product of matrices show that the usual Lorentz transform
from frame S to frame S ′ moving at speed v in the x-direction relative to S satisfies this
equation.

The right-hand side involves two transforms from S ′ to S. In matrix form one pre-multiplies
the metric while the other post-multiplies since the summations are over the two indices of the
metric. Thus the transformation can be written









γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

















γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1









.

Multiplying the second two matrices leaves









γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

















γ γβ 0 0
−γβ −γ 0 0
0 0 −1 0
0 0 0 −1









,

and carrying out the final multiplication, using γ2 − γ2β2 = 1, gives









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









,

as anticipated.

2.10. Prove that the Kronecker delta, δαβ , transforms as a tensor.

Consider
Λα′

µΛ
ν
β′δµν .

The Kronecker delta selects terms for which its two indices match and so this quantity is easily
seen to be equal to

Λα′

µΛ
µ
β′ .

Reading from right-to-left, this corresponds to an LT from S ′ to S followed by one from S to
S ′, and so is the identity transform from S ′ to S ′ which is expressible as δα

′

β′ (also easily shown
with matrices). Therefore

δα
′

β′ = Λα′

µΛ
ν
β′δµν ,

which is the transformation law of a (1, 1) tensor.
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2.11. Why does the gradient vector of a scalar φ take the form (∂φ/∂x0,−∂φ/∂x1,−∂φ/∂x2,−∂φ/∂x3)
in SR?

Because the components ∂φ/∂xα transforms as a one-form, not a vector. If we use the index-
raising property of the metric (which in SR simply reverses the signs of the spatial components)
we arrive at the vector version given.

2.12. Work out the values of the components of the fully contra-variant form of the Kronecker-delta,
δαβ in the standard coordinates of SR.

Raising the index
δαβ = ηαγδβγ = ηαβ.

So, slightly unexpectedly perhaps, the contravariant Kronecker-delta is diagonal with values
(1,−1,−1,−1), and since it is the same as the metric, you won’t see it.

2.13. The “exterior product” of two vectors ~A and ~B is written as ~A ⊗ ~B and is defined to be the
tensor that when applied to two arbitrary one-forms, p̃ and q̃, returns the product of ~A and ~B
operated on each input argument separately, i.e. if T = ~A⊗ ~B then

T (p̃, q̃) = ~A(p̃) ~B(q̃).

Show that the components of T are T αβ = AαBβ.

T has components given by feeding it basis one-forms:

T (ω̃α, ω̃β) = ~A(ω̃α) ~B(ω̃β) = AαBβ,

QED.

If T (p̃, q̃) = T (q̃, p̃) for any p̃ and q̃, what condition must ~A and ~B satisfy?

In components
AαBβpαqβ = AγBδqγpδ.

Re-labelling δ to α on the right-hand side, and gathering coefficients of pα:

(

AαBβqβ − AγBαqγ
)

pα = 0,

which since pα is arbitrary implies that

AαBβqβ = AγBαqγ.
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A similar operation applied to qγ implies that

AαBβ = AβBα,

which it can be seen implies that ~A = k ~B where k is a constant.

Can any tensor with two contravariant indices, T αβ, be written as the exterior product of two
vectors?

No. An arbitrary 2-index tensor has N2 components while the vectors can only supply 2N such
components, so for any N > 2, it is not possible.

2.14. Show that if the stress-energy tensor T has components in the fluid’s rest frame (IRF)

T αβ =









ρ0c
2 0 0 0

0 p0 0 0
0 0 p0 0
0 0 0 p0









,

where ρ0 and p0 are the fluid’s rest frame density and pressure then it can be written as

T αβ =
(

ρ0 +
p0
c2

)

UαUβ
− p0η

αβ, (1)

and also as
T =

(

ρ0 +
p0
c2

)

~U ⊗ ~U − p0η,

where η is the metric tensor.

The four-velocity ~U = γ(c,v), which in the rest frame is (c, 0, 0, 0). Hence

T 00 =
(

ρ0 +
p0
c2

)

U0U0
− p0η

00 = ρ0c
2,

since U0 = c and η00 = 1. Similarly

T 11 =
(

ρ0 +
p0
c2

)

U1U1
− p0η

11 = p,

since η11 = −1 and U1 = 0. In a similar fashion, all components can be verified. The
important point is that the new expression is clearly a tensor as it is built up of scalars, vectors
and tensors, and is therefore true in ANY frame.

The final expression follows on considering a scalar contraction such as

T (p̃, q̃) = T αβpαqβ.

The first part gives expressions of the form

UαUβpαqβ = ~U(p̃)~U(q̃),

and comparing with the previous expression, the ~U ⊗ ~U term is obvious.
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2.15. By applying the appropriate transformation of the IRF components, calculate the components
of the stress-energy tensor of a perfect fluid in a frame in which the fluid is travelling at speed
v in the positive x direction.

Verify that your expression agrees with Eq. 1.

Try to interpret your results for the case of non-relativistic fluids.

Recall the transformation of tensors:

T α′β′

= Λα′

αΛ
β′

βT
αβ.

Λα′

α is the Lorentz transform that takes us from frame S to S ′, and in this case S ′ is moving
at v is the negative x direction relative to S so

[

Λα′

α

]

=









γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1









,

using square brackets to mean the matrix equivalent to the set of components they enclose.
Therefore:

[

T α′β′

]

=









γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

















ρ0c
2 0 0 0

0 p0 0 0
0 0 p0 0
0 0 0 p0

















γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1









.

NB As in Q2.9, In matrix terms the second LT must come second because the summation over
β selects columns. Multiplying through the matrices gives

[

T α′β′

]

=









γ2ρ0c
2 + γ2β2p0 γ2βρ0c

2 + γ2βp0 0 0
γ2βρ0c

2 + γ2βp0 γ2β2ρ0c
2 + γ2p0 0 0

0 0 p0 0
0 0 0 p0









.

Setting ~U = γ(c, v, 0, 0) in Eq. 1 with α = β = 0,

T 00 =
(

ρ0 +
p0
c2

)

U0U0
− p0η

00,

=
(

ρ0 +
p0
c2

)

γ2c2 − p0,

= γ2ρ0c
2 + (γ2

− 1)p0,

= γ2ρ0c
2 + γ2β2p0.

The other components follow in the same manner.

At non-relativistic speeds and pressures, p0 ≪ ρ0c
2, γ ≈ 1 and β ≪ 1, and keeping only the

dominant terms of each component, the stress-energy tensor reduces to

[

T α′β′

]

≈









ρ0c
2 vρ0c 0 0

vρ0c p0 + ρ0v
2 0 0

0 0 p0 0
0 0 0 p0









.
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The T 11 component, representing the flux of x-momentum across a surface of constant x ac-
quires a ρ0v

2 “ram pressure” term. The T 01 components are essentially mass fluxes in the x
direction.

2.16. The conservation of energy and momentum in relativity is expressed by:

T αβ
,β = 0.

(a) How many equations does this expression contain?

4, one for each value of α.

(b) Starting from Eq. 1, show that for α = 0 the conservation equation leads to:

∂

∂t

[

γ2
(

ρ0c
2 + β2p0

)]

+∇ ·
[

γ2
(

ρ0c
2 + p0

)

v
]

= 0.

Using Eq. 1, X0 = ct, U0 = γc, η00 = 1 and η0i = 0,

T 0β
,β =

∂

∂ct

(

ρ0 +
p0
c2

)

γ2c2 +
∂

∂xi

(

ρ0 +
p0
c2

)

γcU i
−

∂

∂ct
p0 = 0.

Multiplying through by c and collecting terms

∂

∂t

[

γ2
(

ρ0c
2 + p0

)

− p0
]

+∇ ·
[

γ2
(

ρ0c
2 + p0

)

v
]

= 0.

Substituting γ2 − 1 = γ2β2, the result follows.

(c) Write down the Newtonian analogue of the equation of the previous part.

The continuity equation:
∂ρ

∂t
+∇ · (ρv) = 0.

2.17. ∗ Use the relativistic conservation relations T αβ
,β = 0 to prove the following three results which

are useful in the theory of gravitational waves:

∂

∂t

∫

T α0 dV = 0,
∫

T ij dV =
1

c

∂

∂t

∫

T i0xj dV,

∫

T ij dV =
1

2c2
∂2

∂t2

∫

T 00xixj dV.
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In these expression dV indicates a volume integral over finite distributions of matter and it
may be assumed that T αβ = 0 outside these distributions.

You will need the following generalisations of Gauss’ theorem

∫

T αk
,k dV =

∮

T αknk dS,
∫

(

T αkxi
)

,k
dV =

∮

T αknkx
i dS,

∫

(

T αkxixj
)

,k
dV =

∮

T αknkx
ixj dS.

where the ni are components of the unit 3-vectors pointing out of a surface S enclosing a
volume V , and as usual Latin indices i, j, k indicate the spatial components alone.

Choosing a surface which surrounds the matter such that T αβ = 0 over the whole surface it
is evident that each of the surface integrals on the right of Gauss’ theorem can be made to be
zero, and thus each of the volume integrals is too. Considering the first one we have

∫

T αk
,k dV = 0.

Now the energy–momentum conservation relations can be written as

T αβ
β = T α0

,0 + T αi
,i = 0.

Integrating over the volume, the second term on the right drops out because of the result above
and we are left with

∫

T α0
,0 dV = 0.

Since the 0 index implies the time component, ct, and swapping the order of integration and
differentiation, we have

∂

∂t

∫

T α0 dV = 0,

which is the first result. This expresses the conservation of mass and momentum for an object
subject to no external momentum and energy transfer. The second version of Gauss’ theorem
similarly implies

∫

(

T αkxi
)

,k
dV = 0.

Expanding out the derivative implies that

∫

T αk
,k x

i dV +

∫

T αi dV = 0,

where the relation xi
,k = δik has been used. The first term can be transformed as above and we

obtain
∫

T αi dV =

∫

T α0
,0 x

i dV. (2)
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Taking the time derivative outside the right-hand integral with x0 = ct, and specialising and
re-labelling α → i, i → j, the second result is obtained.

Finally, applying a similar expansion to the integral on the left of the third version of Gauss’
theorem gives

∫

T αk
,k x

ixj dV +

∫

T αixj dV +

∫

T αjxi dV = 0.

Using the conservation equations to transform the first term we find
∫

T αixj dV +

∫

T αjxi dV =

∫

T α0
,0 x

ixj dV.

Taking the time derivative of this equation and moving the derivative outside the integral on
the right-hand side gives

∫

T αi
,0x

j dV +

∫

T αj
,0x

i dV =
1

c2
∂2

∂t2

∫

T α0 xixj dV.

Setting α = 0, and remembering the symmetry of the stress-energy tensor, the two left-hand
integrals can be transformed using Eq. 2 to give

∫

T ij dV +

∫

T ji dV =
1

c2
∂2

∂t2

∫

T 00 xixj dV.

The final result, which is known as the tensor virial theorem, immediately follows. For non-
relativistic fluids this becomes

∫

T ij dV =
∂2

∂t2

∫

ρ xixj dV.

The integral on the right-hand side is the “quadrupole-moment” or “moment-of-inertia” ten-
sor.

2.18. A spacecraft moves through a nebula measuring the temperature as a function of time. In a
frame in which the nebula is stationary the spacecraft has four-velocity ~U . Show that the rate
of change of temperature with time measured in the spacecraft is given by

dT

dτ
= ∇T (~U),

i.e. the one-form gradient operating on the four-velocity to produce a scalar.

In the rest frame of the spacecraft ~U = (c, 0, 0, 0) while ∇T = ((∂T/∂t)/c, . . .), the spatial
components being irrelevant. Operating with the gradient (a one-form) on the vector gives

∇T (~U) =
∂T

∂t
=

dT

dτ
.

since in the rest frame of the spacecraft t = τ and with no change in spatial coordinate the
partial derivative becomes an ordinary derivative. The usual argument about covariance then
makes this a result that applies in all frames.
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Write out the right hand side of this equation in full and interpret the resulting expression.

Setting ~U = γ(c, vx, vy, vz) and

∇T =

(

1

c

∂T

∂t
,
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)

,

gives
dT

dτ
= γ

(

∂T

∂t
+ (v · ∇)T

)

.

This can be understood to be made up of a term due to the change in temperature of the nebula
at any point with time plus a term due to the spacecraft’s motion through regions of spatially
variable temperature. The γ factor comes from time dilation. Note how neatly the 4-vector
formalism handles this case.
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