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ADDITION OF ANGULAR MOMENTUM

Interacting quantum particles can form quantum states which are e’functions of total angular
momentum; eg for spin- 1

2 particles

Ŝ = S1 + S2

Ŝz = Ŝ1z + Ŝ2z |SMs〉 is an eigen function of S2 and Sz

Ŝ2|SMs〉 = S(S + 1)h̄2|SMs〉 (4.64a)

Ŝz|SMs〉 = Msh̄|SMs〉 (4.64b)

There are 4 possible combinations of spin up & down (α1 α2)(β1 β2)(α1 β2)(β1 α2) with
eigenvalues Ms = 1,−1, 0, 0 which gives S = 0, 1. Shorthand for |α1〉| α2〉 etc.

For s = 1, Ms = −1, 0, 1 (Spin Triplet)

|SMs〉 = β1β2 Ms = −1
↓
↓

|SMs〉 = α1α2 Ms = +1 ↑
↑

For the S = 1, Ms = 0, we form a symmetrized combination (we will show why below)

|SMs〉 = |1 0〉 =
1√
2
[α1β2 + β1α2] (4.65)

and
|S = 0 Ms = 0〉 =

1√
2
[α1β2 − β1α2] = |00〉 (4.66)

is SPIN SINGLET.
We can show that |1 0〉 is an eigen function of S2:

S2 = (S1 + S2)2 = S2
1 + S2

2 + 2S1 · S2 (4.67)

also

2Ŝ1 · Ŝ2 = 2Ŝ1xŜ2x + 2Ŝ1yŜ2y + 2Ŝ1zŜ2z

= S1+S2− + S1−S2+

Hence,
Ŝ2 = Ŝ2

1 + Ŝ2
2 + 2Ŝ1zŜ2z + Ŝ1+Ŝ2− + Ŝ1−Ŝ2+ (4.68)

Suppose |χ〉 = aα1β2 + bβ1α2 is an eigenstate with M = 0. We want to adjust a, b so

S2|χ〉 = S(S + 1)h̄2|x〉 for S = 1

Now, we use (4.68):

S2|χ〉 = a

[
3
4
h̄2α1β2 +

3
4
h̄2α1β2

+ 2
(

h̄

2

)
α1

(
− h̄

2

)
β2 + h̄2β1α2

]
[S1−S2+ aα1β2] is �= 0

+ b

[
6
4
h̄2β1α2 + 2

(
− h̄

2

)
β1

(
h̄

2

)
α2 + h̄2α1β2

]

= α1β2

[
3
2
h̄2a − h̄2

2
a + h̄2b

]

+β1α2

[
3
2
h̄2b − h̄2

2
b + h̄2a

]
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S2|10〉 = α1β2 [a + b]h̄2 + β1α2 [a + b]h̄2 (4.69)

But we know

S2|10〉 = S(s + 1)h̄2|10〉 = 2h̄2|10〉
= 2h̄2(a α1β2 + b α2β1) (4.70)

Comparing (4.69) and (4.70), implies 2a = a + b = 2b ⇒ a = b
Normalising, |a|2 + |b|2 = 1 ⇒ a = b = 1√

2

So the spin state |SMs〉 = |10〉

|10〉 =
1√
2
[α1β2 + β1α2] (4.71)

If a = −b, S2|χ〉 = 0, hence this would be the spin singlet; by the same procedure can
show

|00〉 =
1√
2
[α1β2 − β1α2] (4.72)

is the S = 0 eigenstate with m = 0.

GENERAL ADDITION OF ANGULAR MOMENTA

Eg could add spin AM and orbital AM
J = L + S and seek eigenfunctions of

J2 = J · J = (L + S)2 = L2 + S2 + 2L · S

and, as in (4.68)
= L2 + S2 + 2LzSz + L+S− + L−S+ (4.73)

Also
JZ = Lz + Sz

Most generally,

J = J1 + J2

J2 = J2
1 + J2

2 + 2J1 · J2 (4.74)

= J2
1 + J2

2 + 2J1zJ2z + J1+J2− + J2+J1− (4.75)

now, J1 and J2 are independent so [J1k, J2y] = 0 all components commute
eg [J1x, J2y] = 0. While [J1x, J1y] = ih̄J1z FROM (4.74),

[J2, J2
1 ] = [J2, J2

2 ] = 0 (4.76)

We can show [Jz , J
2] = 0, FIRST CONSIDER

[J1z, J1 · J2] = [J1z, (J1xJ2x + J1yJ2y + J1zJ2z)]

now

[J1z, J1xJ2x] = J1zJ1xJ2x − J1xJ1zJ2x

= J1zJ1xJ2x − J1xJ1zJ2x

= [J1z, J1x]J2x = ih̄J1yJ2x

Similarly

[J1z , J1yJ2y] = −ih̄J1xJ2y

[J1z , J1zJ2z ] = 0

Hence
[J1z , J1 · J2] = ih̄[J1yJ2x − J1xJ2y] �= 0 (4.77)

we can also show that

[J2z , J1 · J2] = ih̄[J2yJ1x − J1yJ2x] �= 0 (4.78)
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[J1z + J2z, J1 · J2] = [Jz , J1 · J2] = 0 (4.79)

So

[Jz, J
2] = [J1z + J2z, J2

1 + J2
2 + 2J1 · J2]

= [J1z + J2z, 2J1 · J2] = 0

ie
[Jz, J

2] = 0 (4.80)

But

[J2, J1z] �= 0
[J2, J2z] �= 0

Now (4.76) and (4.80) mean that we can construct states |j1j2JM〉 which are simultaneous
eigenfunction of J2, Jz, J

2
1 , J2

2 . But are superpositions of |j1m1〉 |j2m2〉
We write these superpositions as

|j1j2JM〉 =
∑
m1
m2

C(j1j2m1m2; JM)|j1m1〉|j2m2〉 (4.81)

The probability amplitudes C(. . . ; JM) are known as Clebsch-Gordan coefficients. If you
know |j1j2JM〉 they can be obtained from the scalar product with the

|j1m1〉|j2m2〉 ≡ |j1m1j2m2〉

ie
C(j1j2m1m2; JM) = 〈j1m1j2m2|j1j2JM〉 (4.82)

alternative notation, see tables.
The sum in (4.81) ranges from

−j1 ≤ m1 ≤ j1, −j2 ≤ m2 ≤ j2

But is constrained by M = m1 + m2. ie

Jz|j1m1〉|j2m2〉 = (J1z + J2z)|j1m1〉|j2m2〉
= (m1 + m2)︸ ︷︷ ︸

M

h̄|j1m1〉|j2m2〉

Hence, sum in (4.81) is actually over one index only.

+j1∑
m1=−j1

m2=M−m1

or
j2∑

m2=−j2
m1=M−m2

(4.83)

EXAMPLE
Construct the state |j1, j2JM〉 =

∣∣ 3
2 |12 1

2

〉
using e’states |j1m1〉|j2m2〉, using the tables.

A :
1√
2

∣∣∣∣32 3
2

〉
|1 − 1〉 − 1√

3

∣∣∣∣32 1
2

〉
|10〉 +

√
1
6

∣∣∣∣32 −1
2

〉
|11〉
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Table 1: Clebsch–Gordan Coefficients 〈j1j2m1m2|j1j2jm〉. 〈j1j2m1m2|j1j2jm〉 =
(−1)j1+j2−j〈j2j1m2m1|j2j1jm〉

j 1
=

3 2
j 2

=
1

j
=

5 2
j

=
3 2

j
=

1 2

m
1

m
2

m
=

5 2
m

=
3 2

m
=

1 2
m

=
−

1 2
m

=
−

3 2
m

=
−

5 2
m

=
3 2

m
=

1 2
m

=
−

1 2
m

=
−

3 2
m

=
1 2

m
=

−
1 2

3/
2

1
1

3/
2

0
√ 2/

5
√ 3/

5
3/

2
−1

√ 1/
10

√ 2/
5

√ 1/
2

1/
2

1
√ 3/

5
−√

2/
5

1/
2

0
√ 3/

5
√ 1/

15
−√

1/
3

1/
2

−1
√ 3/

10
√ 8/

15
√ 1/

6
−1

/
2

1
√ 3/

10
−√

8/
15

√ 1/
6

−1
/
2

0
√ 3/

5
−√

1/
15

−√
1/

3
−1

/
2

−1
√ 3/

5
√ 2/

5
−3

/
2

1
√ 1/

10
−√

2/
5

√ 1/
2

−3
/
2

0
√ 2/

5
−√

3/
5

−3
/
1

−1
1

C
on

ti
nu
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C
le
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or
da
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co

effi
ci

en
ts

j 1
=

2
j 2

=
1

j
=

3
j

=
2

j
=

1

m
1

m
2

m
=

3
m

=
2

m
=

1
m

=
0

m
=

−1
m

=
−2

m
=

−3
m

=
2

m
=

1
m

=
0

m
=

−1
m

=
−2

m
=

1
m

=
0

m
=

2
1

1
2

0
√ 1/

3
√ 2/

3
2

−1
√ 1/

15
√ 1/

3
√ 3/

5
1

1
√ 2/

3
−√

1/
3

1
0

√ 8/
15

√ 1/
6

−√
3/

10
1

−1
√ 1/

5
√ 1/

2
√ 3/

10
0

1
√ 6/

15
−√

1/
2

√ 1/
10

0
0

√ 3/
5

0
−√

2/
5

0
−1

√ 6/
15

√ 1/
2

√
−1

1
√ 1/

5
−√

1/
2

√ 3/
10

−1
0

√ 8/
15

−√
1/

6
−√

−1
−1

√ 2/
3

√ 1/
3

−2
1

√ 1/
15

−√
1/

3
√

−2
0

√ 1/
3

−√
2/

3
−2

−1
1
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Consider an ensemble of N systems, (in M available quantum states) ni of which are in state
ψi (i = 1, 2, 3 . . .M)

We define a density operator:

ρ̂ =
M∑

i=1

Pi|ψi〉〈ψi| (4.84)

Pi is the probability of a system being in state |ψi〉.
Pi = ni/N (4.85)

A state is pure of Pi = 1 for a single state j ⇒ Pi = δij

ie
ρ̂ = |ψj〉〈ψj | (4.86)

If more than one pi is non-zero ie the general form (4.84), the state is mixed clearly
∑

i pi = 1.
Consider an operator Â, with eigenvalues λn ie

Â|n〉 = λn|n〉
What is 〈Â〉 for the ensemble of systems represented by ê ?

For a mixed state
〈Â〉 =

∑
i

Pi〈iÂi〉 (4.87)

Now
|i〉 =

∑
n

Ci
n |n〉 (4.88)

Note the difference between Ci
n, a (possibly) complex probability amplitude, associated with

a probability |Ci
n|2, and pi which is already a probability 1 > pi > 0. We may obtain wave-

interference effects between the components of the superposition (4.88), but not between
components of the mixture in (4.84).

In (6.4) we have a quantum average

〈iÂi〉 =
∑
m,n

C∗(i)
m C(i)

n 〈mÂn〉 (4.89)

=
∑

n

λn|C(i)
n |2 (4.90a)

And then a classical average over the mixture:

〈Â〉 =
∑

i

pi

∑
n

λn|C(i)
n |2 (4.90b)

For a pure state, clearly, we just have the quantum average in (4.90a).
The density operator can be represented as a matrix. Choosing any complete bases, the

elements of the matrix are
ρ̂mn = 〈m ρ̂ n〉. (4.91)

For the pure state, for example, in (4.86)

ρ̂(j)
mn = 〈m|ψj〉〈ψj |n〉

= C(j)
m C(j)∗

n . (4.92)

PROPERTIES OF THE DENSITY MATRIX

1) ρ = ρ+ (HERMITIAN).

2) TR(ρ̂) = 1 eg from (4.92),
∑

m=1 |C(j)
m |2 = 1 Tr ⇒ trace of the matrix ρ̂.

3) ρ̂2 = ρ̂ for a pure state.

4) Tr ρ2 < 1; for a pure state of course, Trρ̂
2 = 1.

5) ρ̂ = 1
M I for an ensemble uniformly distributed over M states.
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〈Â〉 = Tr (ρÂ) (4.93)

FOR AN OBSERVABLE x̂ (⇒ x̂ is Hermitian operator)

Trx̂ =
∑

n

〈n x̂n〉

if x̂ is in a matrix representation, Tr ≡ trace of the matrix.
So, take a pure state:

x̂ = (ρ̂ Â) = |ψ〉 〈ψ|Â
Tr ρ̂ Â =

∑
n

〈n|ψ〉 〈ψ|A|n〉

Since

|ψ〉 =
∑

n

〈n|ψ〉|n〉 =
∑

n

Cn |n〉

Tr(ρ̂Â) =
∑

n

〈ψ|A |n〉Cn

= 〈ψAψ〉.
Can also prove that the trace is independent of the basis |n〉 provided it is a complete

orthonormal set.
EXAMPLES
1) We have particles with spin = 1

2 , prepared in a pure state:

|ψ〉 = Cα|α〉 + Cβ |β〉
then

i =
[ |Cα|2 CαC∗

β

CβC∗
α |Cβ |2

]
if Sz =

h̄

2

[
1 0
0 −1

]
Check that 〈Sz〉 = Tr(ρ̂Ŝz) = |Cα|2 − |Cβ |2 (as in eq. 4.37).

Suppose we had the superposition |ψ〉 = 1√
2
[|α〉 + |β〉] then

ρ̂ =
1
2

[
1 1
1 1

]
can easily show Trρ̂ = Trρ̂z = 1. This is a pure state.

On the Other hand, suppose we have a 50:50 mix of atoms in |α〉 and atoms in state |β〉
The density operator

ρ̂ =
1
2
|α〉〈α| + 1

2
|β〉〈β| =

∑
i

pi|ψi〉〈ψi|

The density matrix

ρ =
1
2

[
1 0
0 1

]
Trρ̂ = 1, but Trρ̂2 = 1

2 as this is a mixed state.
Suppose we have two particles. As in our 2−D examples (with Floquet theory), we write

ψ(1, 2) =
∑
n,m

Cmn |1n〉|2m〉 (4.94)

If Cnm = bndm and
∑

n |bn|2 = 1,
∑

m |dm|2 = 1
Then this is a ‘product state’

ψ(1, 2) =

(∑
n

bn|1n〉
)(∑

m

dm|2m〉
)

(4.95)

ie not an ‘entangled’ state.
Then

ρ(1, 2) =
∑
n,m

∑
n′m′

CnmC∗
n′m′ |1n〉|2m〉〈1n′|〈2m′| (4.96)
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〈n m ρ(1, 2)n′m′〉 = Cnm C∗
n′m′ (4.97)

Suppose that systems (1) and (2) were two particles which were separated so we could only
observe particle 1. Operator Â under investigation only act on particle (1) eg S2

1 or S1z or
L̂1z.

If we estimate 〈Â〉 from many measurements, we are automatically average over the
corresponding (unknown) state of particle 2.

To get the correct 〈Â〉 from observing particle (1) we evaluate

〈Â〉 = Tr(ρ̃, Â)

ρ̃ is a reduced density operator obtained by ‘tracing out’ (averaging over) particle 2. From
(4.96)

ρ̃1 =
∑

k

〈2kρ (1, 2) 2k〉

ρ̃1 =
∑
n,n′

∑
k

CnkC∗
n′k|1n〉 〈1n′|

This is a matrix with elements

〈1n ρ1|n′〉 =
∑

k

CnkC∗
n′k (4.98)

It can be shown that unless we started with a product state, as in (4.95), then ρ̃1 �= ρ̃2
1, so

the reduced matrix corresponds to that of a mixed state, although we know the joint state
is a pure state. (4.98) is sometimes termed an ‘improper mixture’.
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