November 4, 2008

ADDITION OF ANGULAR MOMENTUM

Interacting quantum particles can form quantum states which are e’functions of total angular
momentum; eg for spin—% particles

S, =51, + Sa. |SM,) is an eigen function of S? and S,
S2|SM,) = S(S + 1)h%|SM,) (4.64a)
S.|SM,) = M,h|SM,) (4.64D)
There are 4 possible combinations of spin up & down (a1 a2)(61 B2)(c1 B2)(81 az2) with

eigenvalues M, = 1,—1,0,0 which gives S = 0,1. Shorthand for |a1)| asg) etc.
For s =1, My = —1,0,1 (Spin Triplet)

ISM) =iy M, =1 |
|SMs) = arae Ms = +1 ¥
For the S =1, M, = 0, we form a symmetrized combination (we will show why below)
1
|SM) = [10) = ﬁ[alﬁQ + Braz)] (4.65)
and .
|S =0 Mg = 0> = ﬁ[alﬁg — 610&2] = |OO> (466)

is SPIN SINGLET.
We can show that |1 0) is an eigen function of S?:

5% = (S + S9)? = S2+ 52 4+28, - Sy (4.67)
also
2918 = 251,55, + 251,52 + 251.5.
= S5148_+ 515
Hence,

§2 = 821 824955 + 61l + 51 s (4.68)
Suppose |x) = aay B2 + bfras is an eigenstate with M = 0. We want to adjust a, b so
S2|x) = S(S + 1)R*|z) for S =1
Now, we use (4.68):
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O 1) = a1 p2 |[a + 0)h” + Prag |a + OJh”

But we know

52110) S(s + 1)h?[10) = 27%[10)

= 2h2(a a1z + b 0&261) (470)
Comparing (4.69) and (4.70), implies 2a=a+b=2b=a =10
Normalising, |a]? + b =1 =a=b= %
So the spin state |SM;) = |10)

1
10) = E[OQBQ + Braz] (4.71)

If a = —b, S?|x) = 0, hence this would be the spin singlet; by the same procedure can
show

100) = —=[o1 B2 — Braz] (4.72)

€
V2
is the S = 0 eigenstate with m = 0.

GENERAL ADDITION OF ANGULAR MOMENTA

Eg could add spin AM and orbital AM
J =L+ S and seek eigenfunctions of

J=J - J=(L+8)?=L*+S*+2L-8

and, as in (4.68)

=L +8*+2L,S.+L S +L_Sy (4.73)
Also
Jz =Lz + Sz
Most generally,
J=J+J
JP =T+ I+ 201 Jo (4.74)
=JP 4+ J5 + 2012 ds + JipJas + Joy Jie (4.75)

now, Ji and Jo are independent so [Jix, Joy] = 0 all components commute
eg [.]1;5, ng] = 0. While [.]1;5, le] = thlz FROM (474),

(72,081 = [J%,J3] =0 (4.76)
We can show [J,, J?] = 0, FIRST CONSIDER

[J12, 1 - o] = [Tz, (Jizdow + Jiydoy + J12J22)]

now
[le; JliQ;c] = lejlchQx - Jl;cJIzJQ;c
= lejliQx - Jl;cJIzJQ;c
- [levjlz]J2z :ZhJIyJQx
Similarly
iz, Jiydoy] = —ihJipJay
[le; leJQZ] = 0
Hence
[J1z, J1 - Jo] = ih[J1yJog — Jizdoy] # 0 (4.77)
we can also show that
[Jaz, J1 - Jo] = ih[JayJ1s — Jiydos] # 0 (4.78)



[Jiz + Jouy Ji - Jo) = [Joy Jy - Jo] =0 (4.79)

So
(o J?] = [Jio+ Josy  JE+ T3 4201 o]
= [Jiz+ J22,2J1 - J2] =0
ie
[J.,J%] =0 (4.80)

But

[J27 le] 7é 0

(2, J2.] £ 0

Now (4.76) and (4.80) mean that we can construct states |jijoJJ M) which are simultaneous
eigenfunction of J2,J,, JZ, J3. But are superpositions of |jim1) |jama)
We write these superpositions as

g2 M) =" Cjrjamama; JM)|jima)|jama) (4.81)

my
mo

The probability amplitudes C(...; JM) are known as Clebsch-Gordan coefficients. If you
know |j1j2J M) they can be obtained from the scalar product with the

|jima)|jame) = [j1majama)

ie
C(jrjzmame; JM) = (jimajama|jijaJ M) (4.82)

alternative notation, see tables.
The sum in (4.81) ranges from

—Jj1<m1 <71, —J2<m2=<js
But is constrained by M = mq + meo. ie

Jlgima)|jame) = (Jiz + Jaz)|jima)|jama)
= (m1 4+ ma) h|jimy)|jama)
N——

M

Hence, sum in (4.81) is actually over one index only.

+i1 J2
E or E (4.83)
my==—j1 mo=—j3
mo=M—m1 mi1=M—mg

EXAMPLE
Construct the state |j1, jaJ M) = ‘%|%%> using e’states |j1ma)|jame), using the tables.

Ll st



Table 1: Clebsch—Gordan Coefficients (j1jamima|jijzim)- (J1j2mimaljijaim)
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Consider an ensemble of N systems, (in M available quantum states) n; of which are in state
v, (1=1,2,3...M)
We define a density operator:

M
Z il i) (i (4.84)

P; is the probability of a system being in state [);).
A state is pure of P; =1 for a single state j = P; = d;;
ie
p = ;) (W5l (4.86)
If more than one p; is non-zero ie the general form (4.84), the state is mized clearly ), p; = 1.
Consider an operator A, with eigenvalues \, ie

Aln) = Auln)
What is (A) for the ensemble of systems represented by é ?

For a mixed state .
= Pi(iAi) (4.87)

Now

i) = ZC% [n) (4.88)

Note the difference between C¢,, a (possibly) complex probability amplitude, associated with
a probability |C¢ |2, and p; which is already a probability 1> p; > 0. We may obtain wave-
interference effects between the components of the superposition (4.88), but not between
components of the mizture in (4.84).

In (6.4) we have a quantum average

Z CxOC (mAn) (4.89)

=3 ACHP (4.90a)
n
And then a classical average over the mixture:

Ay =" > aalC? (4.90b)

For a pure state, clearly, we just have the quantum average in (4.90a).
The density operator can be represented as a matriz. Choosing any complete bases, the
elements of the matrix are

Pmn = (M p n). (4.91)
For the pure state, for example, in (4.86)
P = {mls)(wsln)
cW o, (4.92)
PROPERTIES OF THE DENSITY MATRIX
1) p=pt (HERMITIAN).

2) Tr(p) =1 eg from (4.92), >, |C',(,{)|2 =1 Tr = trace of the matrix /.
2 _

w

= p for a pure state.

p
T, p? << 1; for a pure state of course, T}.p? = 1.

>~

)
)
)
5) p= ﬁl for an ensemble uniformly distributed over M states.



(A) =Tr (pA) (4.93)
FOR AN OBSERVABLE & (= % is Hermitian operator)
Tri = Z(n n)

if £ is in a matrix representation, Tr = trace of the matrix.
So, take a pure state:

g=(pA) = ) (YA
TrpA = > (nl) (WAn)

Since
) =D (nlY)ln) = Y Culn)
Tr(pA) = Y (WA [n)Cy
= (PAY).

Can also prove that the trace is independent of the basis |n) provided it is a complete
orthonormal set.

EXAMPLES

1) We have particles with spin = %, prepared in a pure state:

) = Cala) + Cs18)
TG CuC] . R 10
Z‘[cgc; o] T2 o 4

Check that (S.) = Tr(pS.) = |Cal? — |Cs)? (as in eq. 4.37).
Suppose we had the superposition [i)) = %Ha) +|4)] then

L1
P=3 |11
can easily show Trp = Trp® = 1. This is a pure state.

On the Other hand, suppose we have a 50:50 mix of atoms in |«a) and atoms in state |3)
The density operator

then

p=gleal + 510031 = Y mlui v

_ljr o
P=3510 1

Trp =1, but Trp? = % as this is a mized state.
Suppose we have two particles. As in our 2 — D examples (with Floquet theory), we write

w(laZ) = Zcmn |1n>|2m> (494)

n,m

The density matrix

If Com = bpdi and > |bn]2 =1, 3 |dn]* =1
Then this is a ‘product state’

¥(1,2) = (Z bn|1n>> (Z dm|2m)> (4.95)

ie not an ‘entangled’ state.

Then
p(1,2) = 37 57 oG [10) 2m) (10 20| (4.96)

n,mn’m’



(nm p(1,2)n'm’) = Cpm Cio (4.97)

Suppose that systems (1) and (2) were two particles which were separated so we could only
observe particle 1. Operator A under investigation only act on particle (1) eg S? or Sp. or
Lq.. R

If we estimate (A) from many measurements, we are automatically average over the
corresponding (unknown) state of particle 2.

To get the correct (A) from observing particle (1) we evaluate

(A) =Tr(p, A)

p is a reduced density operator obtained by ‘tracing out’ (averaging over) particle 2. From
(4.96)

pr=> (2kp(1,2)2k)
k
pr=2_ CurCpylin) (10|

n,n’ k

This is a matrix with elements

(In p1|n’) = Z CrkCrii (4.98)
k

It can be shown that unless we started with a product state, as in (4.95), then j; # p2, so
the reduced matrix corresponds to that of a mized state, although we know the joint state
is a pure state. (4.98) is sometimes termed an ‘improper mixture’.



