ADDITION OF ANGULAR MOMENTUM

Interacting quantum particles can form quantum states which are e'functions of total angular momentum; eg for spin- $\frac{1}{2}$ particles

$$
\begin{align*}
& \hat{S}=S_{1}+S_{2} \\
& \hat{S}_{z}=\hat{S}_{1 z}+\hat{S}_{2 z} \quad\left|S M_{s}\right\rangle \text { is an eigen function of } S^{2} \text { and } S_{z} \\
& \qquad \hat{S}^{2}\left|S M_{s}\right\rangle=S(S+1) \hbar^{2}\left|S M_{s}\right\rangle \tag{4.64a}\\
& \hat{S}_{z}\left|S M_{s}\right\rangle=M_{s} \hbar\left|S M_{s}\right\rangle \tag{4.64b}
\end{align*}
$$

There are 4 possible combinations of spin up \& down $\left(\alpha_{1} \alpha_{2}\right)\left(\beta_{1} \beta_{2}\right)\left(\alpha_{1} \beta_{2}\right)\left(\beta_{1} \alpha_{2}\right)$ with eigenvalues $M_{s}=1,-1,0,0$ which gives $S=0,1$. Shorthand for $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ etc.

For $s=1, M_{s}=-1,0,1$ (Spin Triplet)

$$
\begin{array}{ll}
\left|S M_{s}\right\rangle=\beta_{1} \beta_{2} & M_{s}=-1 \\
\downarrow \\
\downarrow \\
\left|S M_{s}\right\rangle=\alpha_{1} \alpha_{2} & M_{s}=+1
\end{array} \begin{aligned}
& \uparrow \\
& \uparrow
\end{aligned}
$$

For the $S=1, M_{s}=0$, we form a symmetrized combination (we will show why below)

$$
\begin{equation*}
\left|S M_{s}\right\rangle=|10\rangle=\frac{1}{\sqrt{2}}\left[\alpha_{1} \beta_{2}+\beta_{1} \alpha_{2}\right] \tag{4.65}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|S=0 M_{s}=0\right\rangle=\frac{1}{\sqrt{2}}\left[\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2}\right]=|00\rangle \tag{4.66}
\end{equation*}
$$

is SPIN SINGLET.
We can show that $|10\rangle$ is an eigen function of S^{2} :

$$
\begin{equation*}
S^{2}=\left(S_{1}+S_{2}\right)^{2}=S_{1}^{2}+S_{2}^{2}+2 S_{1} \cdot S_{2} \tag{4.67}
\end{equation*}
$$

also

$$
\begin{aligned}
2 \hat{S}_{1} \cdot \hat{S}_{2} & =2 \hat{S}_{1 x} \hat{S}_{2 x}+2 \hat{S}_{1 y} \hat{S}_{2 y}+2 \hat{S}_{1 z} \hat{S}_{2 z} \\
& =S_{1+} S_{2-}+S_{1-} S_{2+}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\hat{S}^{2}=\hat{S}_{1}^{2}+\hat{S}_{2}^{2}+2 \hat{S_{1 z}} \hat{S_{2 z}}+\hat{S}_{1+} \hat{S}_{2-}+\hat{S}_{1-} \hat{S}_{2+} \tag{4.68}
\end{equation*}
$$

Suppose $|\chi\rangle=a \alpha_{1} \beta_{2}+b \beta_{1} \alpha_{2}$ is an eigenstate with $M=0$. We want to adjust a, b so

$$
S^{2}|\chi\rangle=S(S+1) \hbar^{2}|x\rangle \quad \text { for } S=1
$$

Now, we use (4.68):

$$
\begin{aligned}
S^{2}|\chi\rangle= & a\left[\frac{3}{4} \hbar^{2} \alpha_{1} \beta_{2}+\frac{3}{4} \hbar^{2} \alpha_{1} \beta_{2}\right. \\
& \left.+2\left(\frac{\hbar}{2}\right) \alpha_{1}\left(-\frac{\hbar}{2}\right) \beta_{2}+\hbar^{2} \beta_{1} \alpha_{2}\right] \quad\left[S_{1-} S_{2+} a \alpha_{1} \beta_{2}\right] \text { is } \neq 0 \\
& +b\left[\frac{6}{4} \hbar^{2} \beta_{1} \alpha_{2}+2\left(-\frac{\hbar}{2}\right) \beta_{1}\left(\frac{\hbar}{2}\right) \alpha_{2}+\hbar^{2} \alpha_{1} \beta_{2}\right] \\
= & \alpha_{1} \beta_{2}\left[\frac{3}{2} \hbar^{2} a-\frac{\hbar^{2}}{2} a+\hbar^{2} b\right] \\
& +\beta_{1} \alpha_{2}\left[\frac{3}{2} \hbar^{2} b-\frac{\hbar^{2}}{2} b+\hbar^{2} a\right]
\end{aligned}
$$

But we know

$$
\begin{align*}
S^{2}|10\rangle & =S(s+1) \hbar^{2}|10\rangle=2 \hbar^{2}|10\rangle \\
& =2 \hbar^{2}\left(a \alpha_{1} \beta_{2}+b \alpha_{2} \beta_{1}\right) \tag{4.70}
\end{align*}
$$

Comparing (4.69) and (4.70), implies $2 a=a+b=2 b \Rightarrow a=b$
Normalising, $|a|^{2}+|b|^{2}=1 \quad \Rightarrow a=b=\frac{1}{\sqrt{2}}$
So the spin state $\left|S M_{s}\right\rangle=|10\rangle$

$$
\begin{equation*}
|10\rangle=\frac{1}{\sqrt{2}}\left[\alpha_{1} \beta_{2}+\beta_{1} \alpha_{2}\right] \tag{4.71}
\end{equation*}
$$

If $a=-b, \quad S^{2}|\chi\rangle=0$, hence this would be the spin singlet; by the same procedure can show

$$
\begin{equation*}
|00\rangle=\frac{1}{\sqrt{2}}\left[\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2}\right] \tag{4.72}
\end{equation*}
$$

is the $S=0$ eigenstate with $m=0$.

GENERAL ADDITION OF ANGULAR MOMENTA

Eg could add spin $A M$ and orbital $A M$
$J=L+S$ and seek eigenfunctions of

$$
J^{2}=J \cdot J=(L+S)^{2}=L^{2}+S^{2}+2 L \cdot S
$$

and, as in (4.68)

$$
\begin{equation*}
=L^{2}+S^{2}+2 L_{z} S_{z}+L_{+} S_{-}+L_{-} S_{+} \tag{4.73}
\end{equation*}
$$

Also

$$
J_{Z}=L z+S z
$$

Most generally,

$$
\begin{gather*}
J=J_{1}+J_{2} \\
J^{2}=J_{1}^{2}+J_{2}^{2}+2 J_{1} \cdot J_{2} \tag{4.74}\\
=J_{1}^{2}+J_{2}^{2}+2 J_{1 z} J_{2 z}+J_{1+} J_{2-}+J_{2+} J_{1-} \tag{4.75}
\end{gather*}
$$

now, J_{1} and J_{2} are independent so $\left[J_{1 k}, J_{2 y}\right]=0$ all components commute $\operatorname{eg}\left[J_{1 x}, J_{2 y}\right]=0$. While $\left[J_{1 x}, J_{1 y}\right]=i \hbar J_{1 z}$ FROM (4.74),

$$
\begin{equation*}
\left[J^{2}, J_{1}^{2}\right]=\left[J^{2}, J_{2}^{2}\right]=0 \tag{4.76}
\end{equation*}
$$

We can show $\left[J_{z}, J^{2}\right]=0$, FIRST CONSIDER

$$
\left[J_{1 z}, J_{1} \cdot J_{2}\right]=\left[J_{1 z},\left(J_{1 x} J_{2 x}+J_{1 y} J_{2 y}+J_{1 z} J_{2 z}\right)\right]
$$

now

$$
\begin{aligned}
{\left[J_{1 z}, J_{1 x} J_{2 x}\right] } & =J_{1 z} J_{1 x} J_{2 x}-J_{1 x} J_{1 z} J_{2 x} \\
& =J_{1 z} J_{1 x} J_{2 x}-J_{1 x} J_{1 z} J_{2 x} \\
& =\left[J_{1 z}, J_{1 x}\right] J_{2 x}=i \hbar J_{1 y} J_{2 x}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
{\left[J_{1 z}, J_{1 y} J_{2 y}\right] } & =-i \hbar J_{1 x} J_{2 y} \\
{\left[J_{1 z}, J_{1 z} J_{2 z}\right] } & =0
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left[J_{1 z}, J_{1} \cdot J_{2}\right]=i \hbar\left[J_{1 y} J_{2 x}-J_{1 x} J_{2 y}\right] \neq 0 \tag{4.77}
\end{equation*}
$$

we can also show that

$$
\begin{equation*}
\left[J_{2 z}, J_{1} \cdot J_{2}\right]=i \hbar\left[J_{2 y} J_{1 x}-J_{1 y} J_{2 x}\right] \neq 0 \tag{4.78}
\end{equation*}
$$

$$
\begin{equation*}
\left[J_{1 z}+J_{2 z}, J_{1} \cdot J_{2}\right]=\left[J_{z}, J_{1} \cdot J_{2}\right]=0 \tag{4.79}
\end{equation*}
$$

So

$$
\begin{aligned}
{\left[J_{z}, J^{2}\right] } & =\left[J_{1 z}+J_{2 z}, \quad J_{1}^{2}+J_{2}^{2}+2 J_{1} \cdot J_{2}\right] \\
& =\left[J_{1 z}+J_{2 z}, 2 J_{1} \cdot J_{2}\right]=0
\end{aligned}
$$

ie

$$
\begin{equation*}
\left[J_{z}, J^{2}\right]=0 \tag{4.80}
\end{equation*}
$$

But

$$
\begin{aligned}
& {\left[J^{2}, J_{1 z}\right] \neq 0} \\
& {\left[J^{2}, J_{2 z}\right] \neq 0}
\end{aligned}
$$

Now (4.76) and (4.80) mean that we can construct states $\left|j_{1} j_{2} J M\right\rangle$ which are simultaneous eigenfunction of $J^{2}, J_{z}, J_{1}^{2}, J_{2}^{2}$. But are superpositions of $\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle$

We write these superpositions as

$$
\begin{equation*}
\left|j_{1} j_{2} J M\right\rangle=\sum_{\substack{m_{1} \\ m_{2}}} C\left(j_{1} j_{2} m_{1} m_{2} ; J M\right)\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle \tag{4.81}
\end{equation*}
$$

The probability amplitudes $C(\ldots ; J M)$ are known as Clebsch-Gordan coefficients. If you know $\left|j_{1} j_{2} J M\right\rangle$ they can be obtained from the scalar product with the

$$
\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle \equiv\left|j_{1} m_{1} j_{2} m_{2}\right\rangle
$$

ie

$$
\begin{equation*}
C\left(j_{1} j_{2} m_{1} m_{2} ; J M\right)=\left\langle j_{1} m_{1} j_{2} m_{2} \mid j_{1} j_{2} J M\right\rangle \tag{4.82}
\end{equation*}
$$

alternative notation, see tables.
The sum in (4.81) ranges from

$$
-j_{1} \leq m_{1} \leq j_{1}, \quad-j_{2} \leq m_{2} \leq j_{2}
$$

But is constrained by $M=m_{1}+m_{2}$. ie

$$
\begin{aligned}
J_{z}\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle & =\left(J_{1 z}+J_{2 z}\right)\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle \\
& =\underbrace{\left(m_{1}+m_{2}\right)}_{M} \hbar\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle
\end{aligned}
$$

Hence, sum in (4.81) is actually over one index only.

$$
\begin{equation*}
\sum_{\substack{m_{1}=-j_{1} \\ m_{2}=M-m_{1}}}^{+j_{1}} \text { or } \sum_{\substack{m_{2}=-j_{2} \\ m_{1}=M-m_{2}}}^{j_{2}} \tag{4.83}
\end{equation*}
$$

EXAMPLE
Construct the state $\left.\left|j_{1}, j_{2} J M\right\rangle=\left|\frac{3}{2}\right| \frac{1}{2} \frac{1}{2}\right\rangle$ using e'states $\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle$, using the tables.

$$
A: \quad \frac{1}{\sqrt{2}}\left|\frac{3}{2} \frac{3}{2}\right\rangle|1-1\rangle-\frac{1}{\sqrt{3}}\left|\frac{3}{2} \frac{1}{2}\right\rangle|10\rangle+\sqrt{\frac{1}{6}}\left|\frac{3}{2} \frac{-1}{2}\right\rangle|11\rangle
$$

Table 1: Clebsch-Gordan Coefficients $\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j_{m}\right\rangle . \quad\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j_{m}\right\rangle=$ $(-1)^{j_{1}+j_{2}-j}\left\langle j_{2} j_{1} m_{2} m_{1} \mid j_{2} j_{1} j_{m}\right\rangle$
Continued

Consider an ensemble of N systems, (in M available quantum states) n_{i} of which are in state $\psi_{i} \quad(i=1,2,3 \ldots M)$

We define a density operator:

$$
\begin{equation*}
\hat{\rho}=\sum_{i=1}^{\mathrm{M}} \mathrm{P}_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \tag{4.84}
\end{equation*}
$$

P_{i} is the probability of a system being in state $\left|\psi_{i}\right\rangle$.

$$
\begin{equation*}
P_{i}=n_{i} / N \tag{4.85}
\end{equation*}
$$

A state is pure of $P_{i}=1$ for a single state $j \Rightarrow P_{i}=\delta_{i j}$
ie

$$
\begin{equation*}
\hat{\rho}=\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \tag{4.86}
\end{equation*}
$$

If more than one p_{i} is non-zero ie the general form (4.84), the state is mixed clearly $\sum_{i} p_{i}=1$.
Consider an operator \hat{A}, with eigenvalues λ_{n} ie

$$
\hat{\mathrm{A}}|n\rangle=\lambda_{n}|n\rangle
$$

What is $\langle\hat{\mathrm{A}}\rangle$ for the ensemble of systems represented by \hat{e} ?
For a mixed state

$$
\begin{equation*}
\langle\hat{\mathrm{A}}\rangle=\sum_{i} P_{i}\langle i \hat{\mathrm{~A}} i\rangle \tag{4.87}
\end{equation*}
$$

Now

$$
\begin{equation*}
|i\rangle=\sum_{n} \mathrm{C}_{n}^{i}|n\rangle \tag{4.88}
\end{equation*}
$$

Note the difference between C_{n}^{i}, a (possibly) complex probability amplitude, associated with a probability $\left|\mathrm{C}_{n}^{i}\right|^{2}$, and p_{i} which is already a probability $1>p_{i}>0$. We may obtain waveinterference effects between the components of the superposition (4.88), but not between components of the mixture in (4.84).

In (6.4) we have a quantum average

$$
\begin{align*}
\langle i \hat{\mathrm{~A}} i\rangle & =\sum_{m, n} \mathrm{C}_{m}^{*(i)} \mathrm{C}_{n}^{(i)}\langle m \hat{\mathrm{~A}} n\rangle \tag{4.89}\\
& =\sum_{n} \lambda_{n}\left|\mathrm{C}_{n}^{(i)}\right|^{2} \tag{4.90a}
\end{align*}
$$

And then a classical average over the mixture:

$$
\begin{equation*}
\langle\hat{\mathrm{A}}\rangle=\sum_{i} p_{i} \sum_{n} \lambda_{n}\left|\mathrm{C}_{n}^{(i)}\right|^{2} \tag{4.90b}
\end{equation*}
$$

For a pure state, clearly, we just have the quantum average in (4.90a).
The density operator can be represented as a matrix. Choosing any complete bases, the elements of the matrix are

$$
\begin{equation*}
\hat{\rho}_{m n}=\langle m \hat{\rho} n\rangle . \tag{4.91}
\end{equation*}
$$

For the pure state, for example, in (4.86)

$$
\begin{align*}
\hat{\rho}_{m n}^{(j)} & =\left\langle m \mid \psi_{j}\right\rangle\left\langle\psi_{j} \mid n\right\rangle \\
& =C_{m}^{(j)} C_{n}^{(j) *} \tag{4.92}
\end{align*}
$$

PROPERTIES OF THE DENSITY MATRIX

1) $\rho=\rho^{+}$(HERMITIAN).
2) $T_{R}(\hat{\rho})=1$ eg from (4.92), $\sum_{m=1}\left|C_{m}^{(j)}\right|^{2}=1 T r \Rightarrow$ trace of the matrix $\hat{\rho}$.
3) $\hat{\rho}^{2}=\hat{\rho}$ for a pure state.
4) $T_{r} \quad \rho^{2}<1$; for a pure state of course, $T_{r} \hat{\rho}^{2}=1$.
5) $\hat{\rho}=\frac{1}{\mathrm{M}} \mathrm{I}$ for an ensemble uniformly distributed over M states.

$$
\begin{equation*}
\langle\hat{A}\rangle=\operatorname{Tr}(\rho \hat{A}) \tag{4.93}
\end{equation*}
$$

FOR AN OBSERVABLE $\hat{x} \quad(\Rightarrow \hat{x}$ is Hermitian operator)

$$
\operatorname{Tr} \hat{x}=\sum_{n}\langle n \hat{x} n\rangle
$$

if \hat{x} is in a matrix representation, $\operatorname{Tr} \equiv$ trace of the matrix.
So, take a pure state:

$$
\begin{aligned}
\hat{x}=(\hat{\rho} \hat{\mathrm{A}}) & =|\psi\rangle\langle\psi| \hat{\mathrm{A}} \\
\operatorname{Tr} \hat{\rho} \hat{\mathrm{~A}} & =\sum_{n}\langle n \mid \psi\rangle\langle\psi| \mathrm{A}|n\rangle
\end{aligned}
$$

Since

$$
\begin{aligned}
|\psi\rangle=\sum_{n}\langle n \mid \psi\rangle|n\rangle & =\sum_{n} C_{n}|n\rangle \\
\operatorname{Tr}(\hat{\rho} \hat{\mathrm{A}}) & =\sum_{n}\langle\psi| \mathrm{A}|n\rangle C_{n} \\
& =\langle\psi \mathrm{A} \psi\rangle .
\end{aligned}
$$

Can also prove that the trace is independent of the basis $|n\rangle$ provided it is a complete orthonormal set.

EXAMPLES

1) We have particles with spin $=\frac{1}{2}$, prepared in a pure state:

$$
|\psi\rangle=C_{\alpha}|\alpha\rangle+C_{\beta}|\beta\rangle
$$

then

$$
i=\left[\begin{array}{ll}
\left|C_{\alpha}\right|^{2} & C_{\alpha} C_{\beta}^{*} \\
C_{\beta} C_{\alpha}^{*} & \left|C_{\beta}\right|^{2}
\end{array}\right] \quad \text { if } S_{z}=\frac{\hbar}{2}\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Check that $\left\langle S_{z}\right\rangle=\operatorname{Tr}\left(\hat{\rho} \hat{S}_{z}\right)=\left|C_{\alpha}\right|^{2}-\left|C_{\beta}\right|^{2}$ (as in eq. 4.37).
Suppose we had the superposition $|\psi\rangle=\frac{1}{\sqrt{2}}[|\alpha\rangle+|\beta\rangle]$ then

$$
\hat{\rho}=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

can easily show $\operatorname{Tr} \hat{\rho}=\operatorname{Tr} \hat{\rho}^{z}=1$. This is a pure state.
On the Other hand, suppose we have a $50: 50$ mix of atoms in $|\alpha\rangle$ and atoms in state $|\beta\rangle$ The density operator

$$
\hat{\rho}=\frac{1}{2}|\alpha\rangle\langle\alpha|+\frac{1}{2}|\beta\rangle\langle\beta|=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

The density matrix

$$
\rho=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\operatorname{Tr} \hat{\rho}=1$, but $\operatorname{Tr} \hat{\rho}^{2}=\frac{1}{2}$ as this is a mixed state.
Suppose we have two particles. As in our $2-D$ examples (with Floquet theory), we write

$$
\begin{equation*}
\psi(1,2)=\sum_{n, m} C_{m n} \quad|1 n\rangle|2 m\rangle \tag{4.94}
\end{equation*}
$$

If $C_{n m}=b_{n} \mathrm{~d}_{m}$ and $\sum_{n}\left|b_{n}\right|^{2}=1, \quad \sum_{m}\left|d_{m}\right|^{2}=1$
Then this is a 'product state'

$$
\begin{equation*}
\psi(1,2)=\left(\sum_{n} b_{n}|1 n\rangle\right)\left(\sum_{m} d_{m}|2 m\rangle\right) \tag{4.95}
\end{equation*}
$$

ie not an 'entangled' state.
Then

$$
\begin{equation*}
\rho(1,2)=\sum_{n, m} \sum_{n^{\prime} m^{\prime}} C_{n m} C_{n^{\prime} m^{\prime}}^{*}|1 n\rangle|2 m\rangle\left\langle 1 n^{\prime}\right|\left\langle 2 m^{\prime}\right| \tag{4.96}
\end{equation*}
$$

Suppose that systems (1) and (2) were two particles which were separated so we could only observe particle 1. Operator \hat{A} under investigation only act on particle (1) eg S_{1}^{2} or $S_{1 z}$ or $\hat{L}_{1 z}$.

If we estimate $\langle\hat{A}\rangle$ from many measurements, we are automatically average over the corresponding (unknown) state of particle 2.

To get the correct $\langle\hat{\mathrm{A}}\rangle$ from observing particle (1) we evaluate

$$
\langle\hat{\mathrm{A}}\rangle=\operatorname{Tr}(\tilde{\rho}, \hat{\mathrm{A}})
$$

$\tilde{\rho}$ is a reduced density operator obtained by 'tracing out' (averaging over) particle 2 . From (4.96)

$$
\begin{aligned}
& \tilde{\rho}_{1}=\sum_{k}\langle 2 k \rho(1,2) 2 k\rangle \\
& \tilde{\rho}_{1}=\sum_{n, n^{\prime}} \sum_{k} C_{n k} C_{n^{\prime} k}^{*}|1 n\rangle\left\langle 1 n^{\prime}\right|
\end{aligned}
$$

This is a matrix with elements

$$
\begin{equation*}
\left\langle 1 n \rho_{1} \mid n^{\prime}\right\rangle=\sum_{k} C_{n k} C_{n^{\prime} k}^{*} \tag{4.98}
\end{equation*}
$$

It can be shown that unless we started with a product state, as in (4.95), then $\tilde{\rho}_{1} \neq \tilde{\rho}_{1}^{2}$, so the reduced matrix corresponds to that of a mixed state, although we know the joint state is a pure state. (4.98) is sometimes termed an 'improper mixture'.

