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Foreword:

These notes mostly show the essentials of the lectures, i.e. what I write on
the board. The exception to the rule is when I write pieces of text like this
(outside of the examples). These represent information that I may have said
but not written during lectures. I use them when I think it would help you
follow the notes.

The notes are very terse, and brief to the point of grammatical inaccuracy.
This is because they are notes and are not intended to replace books. I make
them available in case you had to miss a lecture or find it difficult to make
notes during lectures, but if you rely on these notes only and do not read
books, you will struggle.

http://www.warwick.ac.uk/go/px144/books/


Lecture 1

Introduction to GR

Objectives:

• Presentation of some of the background to GR

Reading: Rindler chapter 1, Weinberg chapter 1, Foster & Nightingale
introduction.

1.1 Introduction

Newtonian gravity is clearly inconsistent with Special Relativity (SR). Con-
sider Poisson’s equation for the gravitational potential φ

∇2φ = 4πGρ,

ρ = density. No time derivative =⇒ gravity instantaneous, and ρ not a
Lorentz-invariant.

1.2 What makes gravity special?

Same problems apply to ∇2φ = −ρ/ε0 from electrostatics, but full Maxwell’s
equations are Lorentz-invariant.

Something odd about gravity. Consider:

F = mIa,

for the force acting on a mass accelerating at rate a and

F = mGg,
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for the force acting on the same mass in a gravitational field g. This is why we
can talk about
the acceleration
due to gravity

Why is mI = mG? In Newton’s theory this is a remarkable coincidence.

1.2.1 How remarkable?

Galileo, Newton: mI/mG same to 1 part in 103 (pendulum experiments)

Eötvös (1889): mI/mG same to 1 part in 109

ah

ah

N

a

g

B

A

View from North
celestial pole

Figure: Eötvös’s experiment. Two masses A and B are in
balance on a beam suspended by a torsion fibre. If they have
a different ratio of inertial and gravitational mass, the hori-
zontal component of centripetal acceleration due to Earth’s
rotation will cause a torque. None could be measured.

If two masses gravitationally balance, but mI/mG differs, there will be a
torque on the fibre due to the centripetal acceleration from Earth’s rotation.

Dicke et al (1960s): mI/mG varies by < 1 part in 1012

1.3 Inertial frames

Definition: in the absence of forces, particles move with constant velocity in
inertial frames (straight, at constant speed).

In EM neutral particles can be used to spot an inertial frame, but there are
no “neutral” particles in gravity. Are there inertial frames in a gravitational
field, even in thought experiments?

What defines “inertial frames” (as important in Special Relativity as in New-
tonian gravity)?
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Newton: water in a bucket at the North Pole has a curved surface because
it rotates relative to the “fixed stars” – Earth not an inertial frame.

Ernst Mach (1893): what if there were no “fixed stars”? Thought that Earth
would define its own “inertial frame” – “Mach’s Principle” – water surface
would be flat. Real physical consequences. e.g. expect acceleration in direc-
tion of rotation near massive rotating object, “dragging of inertial frames”.
No quantitative content however. Does the weather

on Earth require
the rest of the
Universe?1.4 Principle of Equivalence

Einstein “explained” mI = mG with his principle of equivalence:

The physics in a freely-falling small laboratory is that of spe-
cial relativity (SR).

Equivalently, one cannot tell whether a laboratory on Earth is not actually
in a rocket accelerating at 1 g.

Has real physical content:

e.g. Preditcs that light moves in a straight line at v = c in a freely-falling
laboratory. It is a “locally inertial” frame and gravity disappears.

g

Light

Free−fall lab view Earth observer’s view

h

l

Figure: Light sent across a freely-falling laboratory on the
right appears straight, but must appear to bend according
to an Earth-based observer since the laboratory accelerates
downwards as the light travels across it.

The light takes time

t =
l

c
to cross the lab. Therefore

h =
1

2
gt2 =

gl2

2c2
.



LECTURE 1. INTRODUCTION TO GR 5

e.g. l = 1 km then h = 0.055 nm on Earth, ∼ 10 m on a neutron star.

Laboratory must be “small” because gravity is not constant. e.g. No single
inertial frame can apply to the whole Earth.

Gravitational time dilation:

ν
0

ν
0

g

h

Figure: Light sent downwards in a freely-falling laboratory
will be unchanged in frequency, but an Earth-based observer
will see a higher freequency at the bottom since the lab is
moving downwards by the time the light reaches the floor.

Assume lab is dropped at same time as light leaves ceiling. Light takes time

t ≈ h

c

to reach floor, by which time lab is moving down at speed

v =
gh

c
.

From the EP, the frequency unchanged in lab, so according to Earth observer,
the frequency at the floor is

ν1 ≈ ν0

(
1 +

v

c

)
= ν0

(
1 +

gh

c2

)
= ν0

(
1 +

φ

c2

)
.

Clocks at ceiling run fast by factor 1 + φ/c2 cf floor! [read up on Pound &
Rebka experiment]. This

“gravitational
time dilation” is
significant for
atomic clocks on
Earth.



Lecture 2

Special Relativity – I.

Objectives:

• To recap some basic aspects of SR

• To introduce important notation.

Reading: Schutz chapter 1; Hobson chapter 1; Rindler chapter 1.

2.1 Introduction

The equivalence principle makes Special Relativity (SR) the starting point
for GR. Familiar SR equations define much of the notation used in GR.

A defining feature of SR are the Lorentz transformations (LTs), from frame
S to S ′ which moves at v in the +ve x-direction relative to S:

t′ = γ
(
t− vx

c2

)
, (2.1)

x′ = γ(x− vt), (2.2)

y′ = y, (2.3)

z′ = z, (2.4)

where the Lorentz factor

γ =

(
1− v2

c2

)−1/2

. (2.5)

Defining x0 = ct, x1 = x, x2 = y and x3 = z, these can be re-written more
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LECTURE 2. SPECIAL RELATIVITY – I. 7

symmetrically as

x0′
= γ

(
x0 − βx1

)
, (2.6)

x1′
= γ

(
x1 − βx0

)
, (2.7)

x2′
= x2, (2.8)

x3′
= x3, (2.9)

where β = v/c, so γ = (1− β2)−1/2.

NB. The indices here are written as superscripts; do not con-
fuse with exponents! The dashes for the new frame are ap-
plied to the indices following Schutz.

More succinctly we have

xα′
=

β=3∑
β=0

Λα′
β x

β,

for α′ = 0, 1, 2 or 3, where the coefficients Λα′
β represent the LT taking us

from frame S to S ′. Can write as a matrix:

Λα′
β =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 , (2.10)

with α′ the row index and β the column index. Better still, using Einstein’s
summation convention write simply:

xα′
= Λα′

β x
β. (2.11)

NB. The summation convention here is special: sum-
mation implied only when the repeated index appears
once up, once down. The LT coefficients Λα′

β have been care-
fully written with a subscript to allow this. This helps keep
track of indices by making some expressions, e.g. Λα′

β x
α′

,
invalid.

LT from S ′ to S is easily seen to be

xα = Λα
β′ xβ′

, (2.12)

where

Λα
β′ =


γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1

 . (2.13)
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It is easily shown that Prove this.
γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1




γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

Defining the Kronecker delta δα
β = 1 if α = β, = 0 otherwise, this equation

can be written:

Λα
γ′Λγ′

β = δα
β . (2.14)

Guarantees that after LTs from S to S ′ then back to S we get xα again
since

Λα
γ′Λγ′

β x
β = δα

βx
β = xα.

Prove each step of
this equation.

Note the use of dummy index γ′ to avoid a clash with α or β.

2.2 Nature of LTs

In SR the coefficients of the LT are constant and thus

xα′
= Λα′

β x
β,

is a linear transform, mathematically very similar to spatial rotations such
as (

x′

y′

)
=

(
c s

−s c

)(
x

y

)
,

where c = cos θ, s = sin θ, c2 + s2 = 1. A defining feature of rotations is that
lengths are preserved, i.e.

l2 = (x′)
2
+ (y′)

2
= x2 + y2.

Q: What general linear transform

x′ = αx+ βy,

y′ = γx+ δy,

where α, β, γ and δ are constants, preserves lengths?

Since

(x′)
2
+ (y′)

2
=
(
α2 + γ2

)
x2 + 2 (αβ + γδ)xy +

(
β2 + δ2

)
y2,
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then

α2 + γ2 = 1,

αβ + γδ = 0,

β2 + δ2 = 1.

These are satisfied by γ = −β and δ = α, so

x′ = αx+ βy,

y′ = −βx+ αy,

with α2 + β2 = 1.

Thus the requirement to preserve length defines the linear
transform representing rotations.

The “interval”
s2 = (ct)2 − x2 − y2 − z2,

plays the same role in SR.



Lecture 3

Special Relativity – II.

Objectives:

• Four vectors

Reading: Schutz chapter 2, Rindler chapter 5, Hobson chapter 5

3.1 The interval of SR

To cope with shifts of origin, restrict to the interval between two events

∆s2 = (ct2 − ct1)
2 − (x2 − x1)

2 − (y2 − y1)
2 − (z2 − z1)

2 ,

or
∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2,

or finally with infinitesimals:

ds2 = c2 dt2 − dx2 − dy2 − dz2. (3.1)

ds2 is the same in all inertial frames. It is a Lorentz scalar. Writing

ds2 = c2 dτ 2,

defines the “proper time” τ , which is the same as the coordinate time t when
dx = dy = dz = 0. i.e. proper time is the time measured on a clock travelling
with an object.

Introducing x0 = ct, etc again, we can write

ds2 = c2 dτ 2 = ηαβ dx
α dxβ, (3.2)
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where

ηαβ =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (3.3)

The interval is the SR equivalent of length corresponding to the relation for
lengths in Euclidean 3D

dl2 = dx2 + dy2 + dz2.

NB There is no standard sign convention for the interval and
ηαβ. Make sure you know the convention used in textbooks.

3.2 The grain of SR

The minus signs in the definition of ds2 means there are three types of
interval:

ds2 > 0 timelike intervals. Intervals between events on the wordlines of massive
particles are timelike.

ds2 = 0 Null intervals. Intervals between events on the wordlines of massless
particles (photons) are null.

ds2 < 0 Spacelike intervals which connect events out of causal contact.

These impose a distinct structure on spacetime.



LECTURE 3. SPECIAL RELATIVITY – II. 12

ct

x

Future

Past

Elsewhere

E

Worldline

Elsewhere

N
u
llN

u
ll

Figure: The invariant interval of SR slices up spacetime rel-
ative to an event E into past, future and “elsewhere’, the
latter being the events not causally connected to E.

These so-called “light-cones” are preserved in GR but are distorted according
to the coordinates used.

3.3 Four-vectors

Any quantity that transforms in the same way as ~X = (x0, x1, x2, x3) is called

a “four vector” (or often just a “vector”). Thus ~V is defined to be a vector
if and only if

V α′
= Λα′

βV
β.

Useful because:

• Four vectors can often be identified easily

• The way they transform follows from the LTs.

• Lead to Lorentz scalars equivalent to ds2.



LECTURE 3. SPECIAL RELATIVITY – II. 13

3.3.1 Four-velocity

The four-velocity is one of the most important four-vectors. Consider

~U = lim
δτ→0

~X(τ + δτ)− ~X(τ)

δτ
=
d ~X

dτ
.

Since ~x is a four-vector and τ is a scalar, ~U is clearly a four-vector.

From time dilation, dτ = dt/γ, so

~U = γ
d ~X

dt
= γ(c,v),

where v is the normal three-velocity and is shorthand for the spatial com-
ponents of the four-velocity.

3.3.2 Scalars from four-vectors

If ~V is a four-vector, then the equivalent of the interval ds2 = ηαβdx
αdxβ is

~V · ~V = |~V |2 = ηαβV
αV β (3.4)

This defines the invariant “length” or “modulus” of a four-vector. It is a
scalar under LTs.

This relation is fundamental. Note that |~V |2 6= (V 0)
2

+
(V 1)

2
+ (V 2)

2
+ (V 3)

2
. SR and GR are not Euclidean.

Example 3.1 Calculate the scalar equivalent to the four-velocity ~U .

Answer 3.1 Long way

ηαβU
αUβ =

(
U0
)2 − (U1

)2 − (U2
)2 − (U3

)2
,

= γ2
(
c2 − v2

x − v2
y − v2

z

)
,

= γ2
(
c2 − v2

)
,

= γ2 c
2

γ2
= c2.

Short way: since it is invariant, calculate its value in a frame for which
v = 0 and γ = 1, from which immediately ~U · ~U = c2.

~U · ~U = c2 is an important relation. It means that ~U is a
timelike four-vector.



Lecture 4

Vectors

Objectives:

• Contravariant and covariant vectors, one-forms.

Reading: Schutz chapter 3; Hobson chapter 3

4.1 Scalar or “dot” product

We have had
~V · ~V = ηαβV

αV β.

If ~A and ~B are four-vectors then ~V with components

V α = Aα +Bα,

is also a four-vector. Therefore

~V · ~V = ηαβ (Aα +Bα)
(
Aβ +Bβ

)
,

= ηαβA
αAβ + ηαβA

αBβ + ηαβB
αAα + ηαβB

αBβ,

= ~A · ~A+ ~A · ~B + ~B · ~A+ ~B · ~B.

Since ηαβ is symmetric then ~A · ~B = ~B · ~A, so

~V · ~V = ~A · ~A+ 2 ~A · ~B + ~B · ~B.

Since ~V · ~V , ~A · ~A and ~B · ~B are all scalars, then

~A · ~B = ηαβA
αBβ (4.1)

is also a scalar, i.e. invariant between all inertial frames. This defines the
scalar product of two vectors.

~A · ~B = 0 =⇒ ~A and ~B orthogonal. Null vectors are self-orthogonal.
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4.2 Basis vectors

With the following basis vectors (4D versions of ~i, ~j, ~k):

~e0 = (1, 0, 0, 0),

~e1 = (0, 1, 0, 0),

~e2 = (0, 0, 1, 0),

~e3 = (0, 0, 0, 1),

we can write for frames S and S ′:

~A = Aα~eα = Aα′
~eα′ .

These express the frame-independent nature of any four-
vector, just as we write a to represent a three-vector.

Note that indices
are lowered on
basis vectors to fit
raised indices on
components.

Substituting
Aα = Λα

β′Aβ′
,

then
Λα

β′Aβ′
~eα = Aα′

~eα′ ,

and re-labelling dummy indices, β′ → α′, α→ β,(
~eα′ − Λβ

α′~eβ

)
Aα′

= 0.

Since ~A is arbitrary, the term in brackets must vanish, i.e.

~eα′ = Λβ
α′~eβ. (4.2)

Comparing with
Aα′

= Λα′
βA

β,

we see that the components transform “oppositely” to the basis vectors,
hence these are often called “contravariant vectors” and superscripted indices
are called “contravariant indices”.

4.3 “Covariant” vectors or “one-forms”

Consider the gradient ∇φ = (∂φ/∂x0, ∂φ/∂x1, ∂φ/∂x2, ∂φ/∂x3), where φ is
a scalar function of the coordinates. Is it a vector?

The chain rule gives

dφ =
∂φ

∂xβ
dxβ,
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and on differentiating wrt xα′

∂φ

∂xα′ =
∂φ

∂xβ

∂xβ

∂xα′ .

But xβ = Λβ
γ′xγ′

so
∂xβ

∂xα′ = Λβ
γ′ δγ′

α′ = Λβ
α′ .

Therefore
∂φ

∂xα′ = Λβ
α′
∂φ

∂xβ
(4.3)

Thus the components of the gradient∇φ do not transform like the components
of four-vectors, instead they transform like basis vectors.

Quantities like ∇φ are called “covariant vectors” or “covec-
tors” or “one-forms”, the latter emphasizing their difference
from vectors.

I will write one-forms with tildes such as p̃. Like vectors, one-forms can be
defined by their transformation, i.e. if quantities pα transform as

pα′ = Λβ
α′ pβ. (4.4)

then they are components of a one-form p̃.

One-forms are written with subscripted indices, also known
as “covariant” indices. Do not confuse with “Lorentz covari-
ance”.

Given a one-form p̃ and a vector ~A, consider the quantity:

pαA
α.

pαA
α is one

number. Why?
Because of the “contra” and “co” transformations, this is a scalar. In a
more frame-independent way we can write this as p̃( ~A). Thus a one-form
is a “machine” that produces a scalar from a vector. Equally, a vector is a
machine that produces a scalar from a one-form, ~A(p̃).

One-forms are best thought of as a series of parallel surfaces. The number of
such surfaces crossed by a vector is the scalar. One-forms cannot be thought
as “arrows” because they do not transform in the same way as vectors. One-
forms do not crop up in orthonormal bases (e.g. Cartesian coordinates or
unit vectors in polar coordinates r̂, θ̂) because in that one case they transform
identically to vectors. They cannot be avoided in GR.
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4.4 Basis one-forms

A set of basis vectors ~eβ define a natural set of basis one-forms ω̃α:

ω̃α (~eβ) = δα
β , (4.5)

because then

p̃( ~A) = [pαω̃
α]
(
Aβ~eβ

)
,

= pαA
βω̃α (~eβ) ,

= pαA
βδα

β ,

= pαA
α,

as required.

One can then show that basis one-forms transform like vector components,
i.e.

ω̃α′
= Λα′

β ω̃
β. (4.6)

4.5 Summary of transformations

Given a vector ~A = Aα~eα and one-form p̃ = pαω̃
α the four transformations

are:

Aα′
= Λα′

β A
β,

ω̃α′
= Λα′

β ω̃
β,

pα′ = Λβ
α′ pβ,

~eα′ = Λβ
α ~eβ.

As long as you remember that vector components have superscripted indices
and one-form components have subscripted indices, and balance free and
dummy indices properly, it should be straightforward to remember these
relations.



Lecture 5

Tensors

Objectives:

• Introduction to tensors, the metric tensor, index raising and lowering
and tensor derivatives.

Reading: Schutz, chapter 3; Hobson, chapter 4; Rindler, chapter 7

5.1 Tensors

Not all physical quantities can be represented by scalars, vectors or one-
forms. We will need something more flexible, and tensors fit the bill.

Tensors are “machines” that produce scalars when operating on multiple

vectors and one-forms. More specifically an

(
N

M

)
tensor produces a scalar

given N one-form and M vector arguments.

e.g. if T (p̃, ~V , q̃, r̃) is a scalar then T is a

(
3

1

)
tensor.

Since vectors acting on one-forms produce scalars, vectors are

(
1

0

)
tensors;

similarly one-forms are

(
0

1

)
tensors and scalars are

(
0

0

)
tensors.

18
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5.2 Tensor components

Components of a tensor in a given frame are found by feeding it basis vectors
and one-forms. e.g.

T (ω̃α, ~eβ, ω̃
γ, ω̃δ) = Tα

β
γδ.

(NB 3 up indices, 1 down matching the rank.) However, like vectors and
one-forms, T exists independently of coordinates.

It is straightforward to show that for arbitrary arguments

T (p̃, ~A, q̃, r̃) = Tα
β

γδpαA
βqγrδ.

All indices are dummy, so this is a single number.

For it to be a scalar the tensor components must transform appropriately.
Using transformation properties of pα, Aβ etc, one can show that

Tα′
β′

γ′δ′

= Λα′
αΛβ

β′Λγ′
γΛ

δ′
δ T

α
β

γδ.

Extends in an obvious manner for different indices. This is often used as the
definition of tensors, similar to our definition of vectors.

5.3 Why tensors?

Consider a

(
1

1

)
tensor such that T (~V , p̃) is a scalar. Now consider

T (~V , ),

i.e. one unfilled slot is available for a one-form, with which it will give a
scalar =⇒ this is a vector, i.e.

~W = T (~V , ),

or in component form
Wα = Tβ

αV β.

This is one reason why tensors appear in physics, e.g. to relate D to E in
EM, or stress to strain in solids. More importantly:

Tensors allow us to express mathematically the frame-
invariance of physical laws. If S and T are tensors and
Sαβ = Tαβ is true in one frame, then it is true in all frames.
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5.4 The metric tensor

Recall the scalar product

~A · ~B = ηαβ A
αBβ.

~A · ~B is a scalar while ~A and ~B are vectors. η is therefore a

(
0

2

)
tensor

producing a scalar given two vector arguments:

~A · ~B = η
(
~A, ~B

)
.

ηαβ are thus components of a tensor, the “metric tensor”.

5.4.1 Index raising and lowering

The metric tensor arises directly from the physics of spacetime. This gives
it a special place in associating vectors and one-forms. Consider as before
an unfilled slot, this time with η:

η( ~A, ).

Fed a vector, this returns a scalar, so it is a one-form. We define this as the
one-form equivalent to the vector ~A:

Ã = η( ~A, ),

or in component form
Aα = ηαβA

β.

Thus ηαβ can be used to lower indices, as in

Tαβ = ηαγT
γ

β,

or
Tαβ = ηαγηβδT

γδ.

If we define ηαβ by
ηαγηγβ = δα

β ,

then applying it to an arbitrary one-form In SR ηαβ = ηαβ.

ηαγAγ = ηαγ
(
ηγδA

δ
)
,

= (ηαγηγδ)A
δ,

= δα
δ A

δ,

= Aα,

so it raises indices.

The metric tensor in its covariant and contravariant forms,
ηαβ and ηαβ, can be used to switch between one-forms and
vectors and to lower or raise any given index of a tensor.

e.g. ηαβ∂φ/∂xβ is
a gradient vector.
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5.5 Derivatives of tensors

Derivatives of scalars, such as ∂φ/∂xα = ∂αφ give one-forms but what about
derivatives of vectors, ∂V β/∂xα?

Work out how they transform:

V β′
= Λβ′

γV
γ

thus

∂V β′

∂xα′ =
∂

∂xα′

[
Λβ′

γV
γ
]
,

= Λβ′
γ
∂V γ

∂xα′ ,

because the Λβ′
γ are constant in SR (but not in GR!).

Using the chain-rule
∂

∂xα′ =
∂xδ

∂xα′

∂

∂xδ
,

and as in the last lecture
∂xδ

∂xα′ = Λδ
α′ .

Therefore
∂V β′

∂xα′ = Λβ′
γΛ

δ
α′
∂V γ

∂xδ
.

This is the transformation rule of a

(
1

1

)
tensor. Key point:

The derivatives of tensors are also tensors – we don’t need to
introduce a new type of quantity – phew!



Lecture 6

Stress–energy tensor

Objectives:

• To introduce the stress–energy tensor

• Conservation laws in relativity

Reading: Schutz chapter 4; Hobson, chapter 8; Rindler, chapter 7.

6.1 Number–flux vector

Consider a cloud of particles (“dust”) at rest in frame S0, the “instantaneous
rest frame” or IRF with number density n0.

Lorentz contraction means that a cube dx0, dy0, dz0 in S0 transforms to
dx = dx0/γ, dy = dy0, dz = dz0 in a frame S in which the particles move,
while particle numbers are conserved, so in S the particle density n is given
by

n = γn0.

n is not a scalar or a four-vector and so cannot be part of form-invariant
relations. Consider instead

~N = n0
~U.

This is a four-vector because

• The four velocity ~U = γ(c,v) is a four-vector

• n0 is a scalar (defined in the IRF so all observers agree on it).

22
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The time component N0 = γn0c = nc gives the number density. The spatial
components N i = γn0v

i = nvi, i = 1, 2, 3 are the fluxes (particles/unit
area/unit time) across surfaces of constant x, y and z.

Even N0 is a “flux across a surface”, a surface of constant time:

Sketch this:

B
A

C

∆(ct)

ct

∆ x

S

x

Figure: World lines of dust particles travelling at speed v
in the x-direction crossing surfaces of constant t (A–B) and
constant x (B–C).

Worldlines crossing CB represent the flux across constant x, N1 = nv

Same worldlines crossing AB represent flux across constant t. Scaling by
ratio of sides of triangle we get a flux:

N1CB

AB
= N1 ∆(ct)

∆x
= N1 c

v
= N0,

so N0 is the particle flux across a surface of constant time.

6.2 Conservation of particle numbers

Consider the scalar ∇̃( ~N) (one-form ∇̃ acting on ~N). Written out in full:

∇̃( ~N) =
∂Nα

∂xα
,

=
∂N0

∂x0
+
∂N1

∂x1
+
∂N2

∂x2
+
∂N3

∂x3
,

=
∂nc

∂ct
+
∂nvx

∂x
+
∂nvy

∂y
+
∂nvz

∂z
.
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This can be written as
∂n

∂t
+∇ · (nv).

Compare with the continuity equation of fluid mechanics:

∂ρ

∂t
+∇ · (ρv) = 0,

based on (Newtonian) conservation of mass . =⇒ if particles are conserved:

∂n

∂t
+∇ · (nv) = 0.

Thus conservation of particle numbers can be expressed as:

∇̃( ~N) =
∂Nα

∂xα
= ∂αN

α = Nα
,α = 0, (6.1)

introducing the short-hand ∂α = ∂/∂xα, and the even shorter-hand comma notation
for derivatives.

6.3 Stress–energy tensor

If the mass density in the IRF is ρ0, then due to Lorentz contraction and
relativistic mass increase, in any other frame it becomes:

ρ = γ2ρ0,

Now consider
Tαβ = ρ0U

αUβ,

then since U0 = γc,
T 00 = γ2ρ0c

2 = ρc2.

From E = mc2, T 00 must therefore be the energy density.

T is a tensor because

• The four velocity ~U is a four-vector

• ρ0 is a scalar (defined in the IRF)

T is called the stress–energy tensor.
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6.3.1 Physical meaning

Tαβ is the flux of the α-th component of four-momentum across a surface of
constant xβ, so:

• T 00 = flux of 0-th component of four-momentum (energy) across the
time surface (cf N0) = energy density

• T 0i = T i0 = energy flux across surface of constant xi (heat conduction
in IRF)

• T ij = flux of i-momentum across j surface = “stress”.

6.4 Perfect fluids

Definition: a perfect fluid has (i) no heat conduction and (ii) no viscosity.

In the IRF (i) implies T 0i = T i0 = 0, while (ii) implies T ij = 0 if i 6= j.

For T ij to be diagonal for any orientation of axes =⇒ T ij = p0δ
ij where p0

is the pressure in the IRF. Therefore in the IRF: Convince yourself
of this.

Tαβ =


ρ0c

2 0 0 0

0 p0 0 0

0 0 p0 0

0 0 0 p0

 .

But this can be written:

Tαβ =
(
ρ0 +

p0

c2

)
UαUβ − p0η

αβ,

and since all terms are tensors, this is true in any frame remembering that The sign of the p0

term can vary
according to
convention
adopted for η

ρ0 and p0 are defined in the IRF.

Just as conservation of particles implies Nα
,α = 0, so energy–momentum

conservation gives

Tαβ
,β =

∂Tαβ

∂xβ
= 0.

This equation plays a key role in GR where the stress–energy
tensor replaces the simple density, ρ, of Newtonian gravity.



Lecture 7

Generalised Coordinates

Objectives:

• Generalised coordinates

• Transformations between coordinates

Reading: Schutz, 5 and 6; Hobson, 2; Rindler, 8.

Consider the following situation:

Figure: A freely falling laboratory with two small masses
floating within it.

The masses can
be made as small
as one likes, so
their movement is
not because of
their mutual
gravitational
attraction.

Lab falls freely with two small masses within it. The masses accelerate
towards centre of mass M . Therefore they will end up moving towards each
other.

Equivalence principle says SR in a small freely-falling lab, but clearly not
true over large region.

Einstein’s remarkable insight was that this was similar to the following:

26
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Equator

N

Figure: Two people set off due North from the equator on
Earth.

Two people at Earth’s equator travel due North, i.e. parallel to each other.
Although they stick to “straight” paths, they find that they move towards
each other, and ultimately meet at the North pole.

Einstein replaced Newtonian gravity by the curvature of
spacetime. Although particles travel in straight lines in space-
time, the warping of spacetime by large masses can cause ini-
tially parallel paths to converge. There is no gravitational
force in GR!

7.1 Coordinates

We have to be able to cope with general coordinates covering potentially
curved spaces =⇒ differential geometry developed by Gauss, Riemann and
many others.

Start by defining a set of coordinates covering an N -dimensional space
(“manifold”) by x1, x2, x3, . . .xN . [Temporary suspension of 0 index to
avoid N − 1 everywhere.]

7.2 Curves

A curve can be defined by the N parametric equations

xα = xα(λ),



LECTURE 7. GENERALISED COORDINATES 28

for each α, where λ is a parameter marking position along the curve. e.g.
x = λ, y = λ2 is a parabola in 2D. λ independent of coordinates =⇒ scalar.

Figure: A curve parameterised by parameter λ.

7.3 Coordinate transforms

Coordinates can always be re-labelled:

xα′
= xα′

(x1, x2, . . . , xβ, . . . xN),

or xα′
= xα′

(xβ) for short. This is a coordinate transformation.

Example 7.1 In Euclidean 2D

r =
(
x2 + y2

)1/2
,

θ = cos−1(x/r),

transforms from Cartesian to polar coordinates.

Recall the SR equation:
xα′

= Λα′
β x

β.

Compare with:

dxα′
=
∂xα′

∂xβ
dxβ,

then theN×N partial derivatives ∂xα′
/∂xβ define the transformation matrix:

L =


∂x1′

/∂x1 ∂x1′
/∂x2 . . . ∂x1′

/∂xN

∂x2′
/∂x1 ∂x2′

/∂x2 . . . ∂x2′
/∂xN

...
...

...
...

∂xN ′
/∂x1 ∂xN ′

/∂x2 . . . ∂xN ′
/∂xN

 ,
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a generalisation of the LT matrix Λ. The Lα′
β are not constant unlike Λα′

β

in SR; the transformation also only applies to infinitesimal displacements.

Good news: With ∂xα′
/∂xβ instead of Λα′

β, the transforma-
tion formulae for vectors, one-forms and tensors are otherwise
unchanged.

7.4 The general metric tensor

In a freely-falling frame (SR), let coordinates be wα, so the interval is

ds2 = ηγδ dw
γ dwδ.

Replacing w with x using

dwγ =
∂wγ

∂xα
dxα and dwδ =

∂wδ

∂xβ
dxβ,

avoiding clashing indices, gives

ds2 = ηγδ
∂wγ

∂xα

∂wδ

∂xβ
dxα dxβ.

Setting

gαβ = ηγδ
∂wγ

∂xα

∂wδ

∂xβ
,

we therefore have the very important relation

ds2 = gαβ dx
α dxβ. (7.1)

gαβ is the generalised version of the SR metric tensor ηαβ and replaces it.

e.g. In general coordinates, the four-velocity ~U satisfies

gαβU
αUβ = c2. (7.2)

The first part of the transition from SR to GR is to replace
every occurrence of ηαβ by gαβ.

e.g. index raising loweringAα = ηαβA
β becomesAα = gαβA

β. gαβ is symmet-
ric but not necessarily diagonal; ηαβ is a special case. Similarly ηαγη

γβ = δβ
α

becomes gαγg
γβ = δβ

α, so the “up” coefficients come from the matrix-inverse
of the “down” ones.



Lecture 8

Metrics

Objectives:

• More on the metric and how it transforms.

Reading: Hobson, 2.

8.1 Riemannian Geometry

The interval
ds2 = gαβ dx

α dxβ,

is a quadratic function of the coordinate differentials.

This is the definition of Riemannian geometry, or more correctly, pseudo-Riemannian
geometry to allow for ds2 < 0.

Example 8.1 What are the coefficients of the metric tensor in 3D Euclidean
space for Cartesian, cylindrical polar and spherical polar coordinates?

Answer 8.1 The “interval” in Euclidean geometry can be written in Carte-
sian coordinates as Introducing an

obvious notation
with x standing
for the x
coordinate index,
etc.

ds2 = dx2 + dy2 + dz2.

The metric tensor’s coefficients are therefore given by

gxx = gyy = gzz = 1,

with all others = 0.

In cylindrical polars:
ds2 = dr2 + r2dφ2 + dz2,

30
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so grr = 1, gφφ = r2, gzz = 1 and all others = 0.

Finally spherical polars:

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2,

gives grr = 1, gθθ = r2 and gφφ = r2 sin2 θ.

Example 8.2 Calculate the metric tensor in 3D Euclidean space for the
coordinates u = x+ 2y, v = x− y, w = z.

Answer 8.2 The inverse transform is easily shown to be x = (u + 2v)/3,
y = (u− v)/3, z = w, so

dx =
1

3
du+

2

3
dv,

dy =
1

3
du− 1

3
dv,

dz = dw,

so

ds2 =

(
1

3
du+

2

3
dv

)2

+

(
1

3
du− 1

3
dv

)2

+ dw2,

=
2

9
du2 +

5

9
dv2 +

2

9
dudv + dw2.

We can immediately write guu = 2/9, gvv = 5/9, gww = 1, and guv = gvu =
1/9 since the metric is symmetric. This metric still describes 3D Euclidean
flat geometry, although not obviously.

8.2 Metric transforms

The method of the example is often the easiest way to transform metrics,
however using tensor transformations, we can write more compactly:

gα′β′ =
∂xγ

∂xα′

∂xδ

∂xβ′ gγδ.

This shows how the components of the metric tensor transform under coor-
dinate transformations but the underlying geometry does not change.

Example 8.3 Use the transformation of g to derive the metric components
in cylindrical polars, starting from Cartesian coordinates.
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Answer 8.3 We must compute terms like ∂x/∂r, so we need x, y and z in
terms of r, φ, z:

x = r cosφ,

y = r sinφ,

z = z.

Find ∂x/∂r = cosφ, ∂y/∂r = sinφ, ∂z/∂r = 0. Consider the grr component:

grr =
∂xi

∂r

∂xj

∂r
gij,

where i and j represent x, y or z. Since gij = 1 for i = j and 0 otherwise,
and since ∂z/∂r = 0, we are left with:

grr =

(
∂x

∂r

)2

+

(
∂y

∂r

)2

= cos2 φ+ sin2 φ = 1.

Similarly

gθθ =

(
∂x

∂φ

)2

+

(
∂y

∂φ

)2

= (−r sinφ)2 + (r cosφ)2 = r2,

and gzz = 1, as expected.

This may seem a very difficult way to deduce a familiar result, but the point is
that it transforms a problem for which one otherwise needs to apply intuition
and 3D visualisation into a mechanical procedure that is not difficult – at
least in principle – and can even be programmed into a computer.

8.3 First curved-space metric

We can now start to look at curved spaces. A very helpful one is the surface
of a sphere.
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Figure: Surface of a sphere parameterised by distance r from
a point and azimuthal angle φ

The sketch shows
the surface
“embedded” in
3D. This is a
priviledged view
that is not always
possible. You
need to try to
imagine that you
are actually stuck
in the surface
with no “height”
dimension.

Two coordinates are needed to label the surface. e.g. the distance from a
point along the surface, r, and the azimuthal angle φ, similar to Euclidean
polar coords.

The distance AP is given by R sin θ, so a change dφ corresponds to distance
R sin θ dφ. Thus the metric is

ds2 = dr2 +R2 sin2 θ dφ2.

or since r = Rθ,

ds2 = dr2 +R2 sin2
( r
R

)
dφ2.

This is the metric of a 2D space of constant curvature.

Circumference of circle in this geometry: set dr = 0, integrate over φ

C = 2πR sin
r

R
< 2πr.

e.g. On Earth (R = 6370 km), circle with r = 10 km shorter by 2.6 cm than
if Earth was flat.

Exactly the same is possible in 3D. i.e we could find that a circle radius r
has a circumference < 2πr owing to gravitationally induced curvature.

8.4 2D spaces of constant curvature

Can construct metric of the surface of a sphere as follows. First write the
equation of a sphere in Euclidean 3D

x2 + y2 + z2 = R2.
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If we switch to polars (r, θ) in the x–y plane, this becomes

r2 + z2 = R2.

In the same terms the Euclidean metric is

dl2 = dr2 + r2dθ2 + dz2.

But we can use the restriction to a sphere to eliminate dz which implies

2r dr + 2z dz = 0,

and so

dl2 = dr2 + r2dθ2 +
r2dr2

z2
,

which reduces to

dl2 =
dr2

1− r2/R2
+ r2dθ2.

Defining curvature k = 1/R2, we have

dl2 =
dr2

1− kr2
+ r2dθ2,

the metric of a 2D space of constant curvature. k > 0 can be “embedded”
in 3D as the surface of a sphere; k < 0 cannot, but it is still a perfectly valid
geometry. [A saddle shape has negative curvature over a limited region.]

A very similar procedure can be used to construct the spatial part of the
metric describing the Universe.



Lecture 9

The connection

Objectives:

• The connection

Reading: Schutz 5; Hobson 3; Rindler 10.

Apart from the change from ηαβ to its more general counterpart, gαβ, we have
not had to change much in moving from SR to more general coordinates, but
this comes to an end when we look again at derivatives.

9.1 Covariant derivatives of vectors

We showed that ∂V α/∂xβ are components of a tensor in SR; this is not true

in GR. Consider the derivative of ~V = V α~eα:

∂~V

∂xβ
=
∂V α

∂xβ
~eα + V α ∂~eα

∂xβ
.

∂~eα/∂x
β, the change in a vector is still a vector, and hence can be expanded

over the basis:
∂~eα

∂xβ
= Γγ

αβ ~eγ (9.1)

where the Γγ
αβ are a set of coefficients dependent upon position. They are

called variously the “connection coefficients” or “Christoffel symbols”. This
equation defines the coefficients Γγ

αβ. Sometimes
“Christoffel
symbols of the
second kind”

Swapping indices α and γ, we can write

∂~V

∂xβ
=

(
∂V α

∂xβ
+ Γα

γβV
γ

)
~eα. (9.2)
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The derivative of a vector must be a tensor, so

∂V α

∂xβ
+ Γα

γβV
γ,

are the components of a tensor, called the covariant derivative, written in
frame-independent notation as ∇~V with components

∇βV
α = ∂βV

α + Γα
γβV

γ. (9.3)

or equivalently
V α

;β = V α
,β + Γα

γβ V
γ, (9.4)

introducing the semi-colon notation to represent the covariant derivative.

The final notation has the advantage that the β index is last in every term.
Otherwise, try to remember that whichever component you take the derivative
with respect to goes last on the connection coefficients.

The two terms ∂βV
α and Γα

γβ V
γ are do not transform as tensors, only their

sum does; in SR ∂βV
α are tensor components while Γα

γβ = 0.

∂βV
α comes from the change of components with position, Γα

γβ V
γ comes

from the change of basis vectors with position.

Example 9.1 Calculate the connection coefficients in Euclidean polar coor-
dinates r, θ.

Answer 9.1 Start from Cartesian basis vectors ~ex and ~ey. Using the trans-
formation rule for basis vectors:

~eα′ =
∂xβ

∂xα′ ~eβ,

we have

~er =
∂x

∂r
~ex +

∂y

∂r
~ey,

and since x = r cos θ, y = r sin θ,

~er = cos θ ~ex + sin θ ~ey.

Similarly
~eθ = −r sin θ ~ex + r cos θ ~ey.

Prove this.
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Taking derivatives, remembering that the Cartesian vectors are constant, we
have

∂~er

∂r
= 0,

∂~er

∂θ
= − sin θ~ex + cos θ~ey,

∂~eθ

∂r
= − sin θ~ex + cos θ~ey,

∂~eθ

∂θ
= −r cos θ~ex − r sin θ~ey,

which we can re-write as

∂~er

∂r
= 0,

∂~er

∂θ
=

1

r
~eθ,

∂~eθ

∂r
=

1

r
~eθ,

∂~eθ

∂θ
= −r~er.

Hence the Christoffel symbols are Γθ
rθ = Γθ

θr = 1/r, Γr
θθ = −r, and Γr

rr =
Γθ

rr = Γr
rθ = Γr

θr = Γθ
θθ = 0.

Note that the final set of relations does not involve Cartesian vectors. The
Christoffel symbols allow one to work in complex coordinate systems without
reference to Cartesian coordinates, and to derive such well-known formulae
such as the Laplacian in spherical coordinates – see Schutz or Hobson for
this.

The way we calculated the connection above is tedious and indirect, but there
is a better way.

9.2 The Levi-Civita Connection

One can show that See handout 3

Γα
γβ =

1

2
gαδ (gδβ,γ + gγδ,β − gγβ,δ) ,

which is known as the Levi-Civita connection and shows that the connec-
tion can be calculated from the metric alone without recourse to Cartesian
coordinates.
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Example 9.2 Calculate the connection coefficients in polar coordinates (r, θ).

Answer 9.2 The metric is ds2 = dr2 + r2 dθ2, so grr = grr = 1, gθθ = r2,
gθθ = 1/r2, while all grθ = 0.

Thus

Γθ
rθ =

1

2
gθθ (gθr,θ + gθθ,r − grθ,θ) ,

=
1

2
gθθgθθ,r,

=
1

2

1

r2
2r,

=
1

r
.

This agrees with the value found earlier, and although algebraically tricky, is
more straightforward.

9.3 Covariant derivatives of one-forms

What is the equivalent for one-forms of

V α
;β = V α

,β + Γα
γβ V

γ ?

Consider the scalar φ = pαV
α, then φ,β is a tensor and

φ,β = pαV
α

,β + pα,βV
α.

Writing
φ,β = pα (V α

,β + Γα
γβV

γ) + (pα,β − Γγ
αβpγ)V

α,

or
φ,β = pαV

α
;β + (pα,β − Γγ

αβpγ)V
α.

All terms outside brackets are tensors and therefore

pα;β = pα,β − Γγ
αβpγ,

is a tensor, the covariant derivative of the one-form.

These results generalise to general tensors, e.g.

Tαβ
γδ;σ = Tαβ

γδ,σ + Γα
ρσT

ρβ
γδ + Γβ

ρσT
αρ

γδ − Γρ
γσT

αβ
ρδ − Γρ

δσT
αβ

γρ

i.e one +ve term for each contravariant index, one −ve term for each covari-
ant one, derivative index always last on connection.

This chapter/lecture has introduced the important concept of the “covariant
derivative” which allows us to write frame-invariant tensor derivatives in
GR.



Lecture 10

Parallel transport

Objectives:

• Parallel transport

• Geodesics

• Equations of motion

Reading: Schutz 6; Hobson 3; Rindler 10.

In this lecture we are finally going to see how the metric determines the
motion of particles. First we discuss the concept of “parallel transport”.

10.1 Parallel transport

In SR, the equation for force-free motion of a particle is

~A =
d~U

dτ
= 0,

i.e a straight line through spacetime as well as 3D space with the vector ~U
remaining constant along the line parameterised by τ .

This is extended to the curved spacetime of GR by the notion of parallel
“transport” in which a vector is moved along a curve staying parallel to
itself and of constant magnitude.
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Figure: Parallel transport of a vector from A to B, keeping
it parallel to itself and of constant length at all points.

Consider the change of a vector ~V along a line parameterised by λ

d~V

dλ
=
dV α

dλ
~eα + V αd~eα

dλ
.

We can write
d~eα

dλ
=
∂~eα

∂xβ

dxβ

dλ
.

Using this and the definition of the connection

∂~eα

∂xβ
= Γγ

αβ~eγ,

gives
d~V

dλ
=
dV α

dλ
~eα + V αΓγ

αβ
dxβ

dλ
~eγ.

Swapping dummy indices α and γ in the second term finally leads to

d~V

dλ
=

(
dV α

dλ
+ Γα

γβ
dxβ

dλ
V γ

)
~eα.

This is a vector with components

DV α

Dλ
=
dV α

dλ
+ Γα

γβ
dxβ

dλ
V γ,

and is known variously as the “intrinsic”, “absolute” or “total” derivative.
One also sometimes sees the vector written as

d~V

dλ
= ∇~U

~V ,

where Uα = dxα/dλ is the “tangent vector” pointing along the line (= four-
velocity if λ = τ).
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The components are very similar to the covariant derivative

V α
;β = V α

,β + Γα
γβV

γ.

In fact if we write DV α/Dλ is to
dV α/dλ as V α

;β is
to V α

,β.

dV α

dλ
=
∂V α

∂xβ

dxβ

dλ
=
∂V α

∂xβ
Uβ,

(a cheat: V α might only be defined on the line) then we can write

DV α

Dλ
= V α

;βU
β.

Parallel transport: if a vector ~V is “parallel transported” along a line then

∇~U
~V =

d~V

dλ
= 0,

or in component form: Shows how V α

must change for
~V to remain
constant.

DV α

Dλ
=
dV α

dλ
+ Γα

γβ
dxβ

dλ
V γ = 0.

10.2 Straight lines or “geodesics”

With parallel transport we can extend the idea of “straight” lines to curved
spaces:

Definition: a line is “straight” if it parallel transports its own
tangent vector.

In other words straight lines in curved spaces are defined by ∇~U
~U = 0 or,

setting V α = Uα = dxα/dλ

d2xα

dλ2
+ Γα

γβ
dxβ

dλ

dxγ

dλ
= 0.

More compactly

ẍα + Γα
γβẋ

βẋγ = 0,

using the “dot” notation for derivatives wrt λ.

• These are force-free equations of motion

• Extends SR ~A = d~U/dτ = 0 to GR.
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• In GR, gravity is not a force but a distortion of spacetime

• Metric gαβ → Γγ
αβ → particle motion.

• Straight lines are often called geodesics. “Great circles” are geodesics
on spheres.

10.2.1 Affine parameters

We could have defined “straight” by ∇~U
~U = k~U , i.e. the tangent vector

changes by a vector parallel to itself. However in such cases one can always
transform to a new parameter, say µ = µ(λ), such that ∇ ~U ′

~U ′ = 0, where
~U ′ is the new tangent vector. µ is then called an affine parameter. Proper
time τ is affine for massive particles. I will always

assume affine
parameters.

10.3 Example: motion under a central force

Consider motion under Newtonian gravity

d~V

dt
= −GM

r2
~̂r.

In general coordinates the left-hand side is

dV α

dt
+ Γα

βγV
βV γ.

In polar coordinates ~V = (ṙ, θ̇).

From last time Γr
θθ = −r, Γθ

rθ = Γθ
θr = 1/r with all others = 0. Therefore:

dV r

dt
+ Γr

θθV
θV θ = −GM

r2
,

and
dV θ

dt
+ Γθ

rθV
rV θ + Γθ

θrV
θV r = 0.

These give

r̈ − rθ̇2 = −GM
r2

,

and

θ̈ +
2

r
ṙθ̇ = 0.

The second can be integrated to give the well known conservation of angular
momentum r2θ̇ = h.
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These two equations are the equations of planetary motion which lead to
ellipses and Kepler’s laws. The point here is how the connection allows one
to cope with familiar equations in awkward coordinates. In much of physics
such coordinates can be avoided, but not in GR where there is no sidestepping
the connection. Note here how the centrifugal term, rθ̇2, appears via the
connection.



Lecture 11

Geodesics

Objectives:

• Variational approach to geodesics

Reading: Schutz, 5, 6 & 7; Hobson 5, 7; Rindler 9, 10

11.1 Extremal Paths

Straight lines are also the shortest. In GR path length is In GR S is
actually
maximum for
straight paths, as
a consequence of
the minus signs in
the metric.

S =

∫
ds =

∫ √
gαβ dxα dxβ.

Parameterising by λ:

S =

∫ √
gαβ

dxα

dλ

dxβ

dλ
dλ.

Minimisation of S is a variational problem solvable with the Euler-Lagrange
equations: See handout 4

d

dt

(
∂L

∂ẋα

)
− ∂L

∂xα
= 0,

where ẋα = dxα/dλ and the Lagrangian is

L =
ds

dλ
=

√
gαβ

dxα

dλ

dxβ

dλ
.

The square root is inconvenient; consider instead using L′ = (L)2 as the
Lagrangian. Then the Euler-Lagrange equations would be

d

dλ

(
2L

∂L

∂ẋα

)
− 2L

∂L

∂xα
= 0.
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Now if λ satisfies
ds

dλ
= L = constant,

then

2L

[
d

dλ

(
∂L

∂ẋα

)
− ∂L

∂xα

]
= 0,

so

L′ = (L)2 = gαβ
dxα

dλ

dxβ

dλ
,

leads to the same equations as L provided λ is chosen so that ds/dλ is
constant (L works for any λ).

The constraint on λ is another way to define affine parameters. Since
ds/dτ = c, the speed of light, a constant, proper time is affine. But remember,

proper time
cannot be used
for photons.

Can show that Euler-Lagrange equations are equivalent to equations of mo-
tion derived before, i.e.

ẍα + Γα
γβẋ

βẋγ = 0.

11.2 Why use the Lagrangian approach?

Application of the Euler-Lagrange equations is often easier than calculating
the 40 coefficients of the Levi-Civita connection.

Example 11.1 Calculate the equations of motion for the Schwarzschild met-
ric

ds2 = c2
(

1− 2GM

c2r

)
dt2 − dr2

1− 2GM/c2r
− r2

(
dθ2 + sin2 θ dφ2

)
,

using the Euler-Lagrange approach.

Answer 11.1 Setting dt → ṫ, dr → ṙ, dθ → θ̇ and dφ → φ̇ in ds2, the
Lagrangian is given by

L = c2
(

1− 2GM

c2r

)
ṫ2 − ṙ2

1− 2GM/c2r
− r2

(
θ̇2 + sin2 θ φ̇2

)
.

Consider, say, the θ component of the E-L equations:

d

dλ

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0.

This gives
d

dλ

(
−2r2θ̇

)
+ 2r2 sin θ cos θ φ̇2 = 0,

much more directly than the connection approach.
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11.3 Conserved quantities

If L does not depend explicitly on a coordinate xα say, then ∂L/∂xα = 0,
and so the E-L equations show that

∂L

∂ẋα
= 2gαβẋ

β = 2ẋα = constant.

In other words the covariant component of the corresponding velocity is
conserved.

e.g. The metric of the example does not depend upon φ so

r2 sin2(θ) φ̇ = constant.

When motion confined to equatorial plane θ = π/2, r2φ̇ = h, a constant:
GR equivalent of angular momentum conservation.

11.4 Slow motion in a weak field

Consider equations of motion at slow speeds in weak fields. Mathematically
ẋi → 0 for i = 1, 2 or 3, and gαβ = ηαβ +hαβ where |hαβ| ¿ 1. The equations
of motion

ẍα + Γα
βγẋ

βẋγ = 0,

reduce to
ẍα + Γα

00ẋ
0ẋ0 = 0.

The time “velocities” ẋ0 are never negligible, and in fact for λ = τ , are
d(ct)/dτ ≈ c.

From the Levi-Civita equation, retaining terms to first order in h

Γα
00 =

1

2
gαβ(gβ0,0 + g0β,0 − g00,β),

=
1

2
ηαβ(hβ0,0 + h0β,0 − h00,β).

If the metric is stationary, all time derivatives (“, 0” terms) are zero, and so

Γ0
00 =

1

2
(h00,0 + h00,0 − h00,0) = 0,

since all time derivatives are zero. Therefore ẍ0 = 0 or ẋ0 is constant. The
spatial components become

Γi
00 = −1

2
(hi0,0 + h0i,0 − h00,i) =

1

2
h00,i,
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(ηii = −1 for each i, stationary metric) giving

ẍi = −1

2
h00,iẋ

0ẋ0.

Since ẋ0 = cdt/dτ is constant, we finally obtain

d2xi

dt2
= −1

2
c2h00,i,

or

r̈ = −1

2
c2∇h00.

(dots now derivatives wrt t not τ). What is h00? Consider clock at rest then

c2 dτ 2 = g00c
2 dt2,

or

dτ =
√

1 + h00 =

(
1 +

h00

2

)
dt.

But equivalence principle =⇒

dτ =

(
1 +

φ

c2

)
dt,

so

h00 =
2φ

c2
,

where φ is Newtonian gravitational potential. Therefore

r̈ = −∇φ,

the equation of motion in Newtonian gravity! φ is the
Newtonian
equivalent to the
g00 component of
the metric. None
of the other
metric
components are
represented in
Newton’s theory.

This finally completes the loop of establishing that motion in a curved space-
time can give rise to what until now we have called the force of gravity. On
Earth h00 ∼ 10−9. It is amazing that so tiny a wrinkle of spacetime leads
to the phenomenon of gravity. We must next see how mass determines the
metric.



Lecture 12

Curvature

Objectives:

• Curvature and geodesic deviation

Reading: Schutz, 6; Hobson 7; Rindler 10.

12.1 Local inertial coordinates

The metric determines particle motion, and Newton’s Law of Gravity, ∇2φ =
4πGρ, suggests that mass must fix the metric. Thus we seek a tensor built
from the metric and/or its derivatives that can substitute for ∇2φ in New-
ton’s theory.

gαβ alone is no good because coordinates can always be found such that
gαβ = ηαβ, the Minkowski mertic. This clearly cannot simultaneously de-
scribe situations with and without mass.

Proof: there are 10 independent coefficients of gαβ but 16 degrees of freedom
in the transformation matrix, ∂xβ/∂xα′

.

The first derivatives ∂gαβ/∂x
γ = gαβ,γ are not enough either, because it can

be shown that coordinates can always be found in which

gαβ,γ = 0.

In these coordinates, the Levi-Civita equation implies

Γα
βγ = 0,

so that Aα = dUα/dτ = 0. These are locally inertial or geodesic coordinates,
the freely-falling frames of the equivalence principle.
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Corollary: in an inertial frame, covariant derivative→ ordinary partial deriva-
tive =⇒

gαβ;γ = gαβ,γ = 0,

gαβ;γ = 0 is tensorial, so the metric is covariantly constant, ∇g = 0.

Conclusion: we need a tensor involving at least second derivatives of the
metric, as suggested by ∇2φ and g00 ≈ 1 + 2φ/c2.

12.2 Curvature tensor

Consider the expression
∇γ∇βVα = Vα;βγ,

where Ṽ is an arbitrary one-form. This is a tensor (derivatives are covariant)
which contains second derivatives of the metric. Expanding the covariant
derivative with respect to γ:

Vα;βγ = [Vα;β];γ ,

= Vα;β,γ − Γσ
αγVσ;β − Γσ

βγVα;σ.

Each of the three covariant derivatives, Vα;β etc, can be expanded similarly
and one ends up with an expression of the form

Vα;βγ = [. . .]Vµ,βγ + [. . .]Vρ,σ + [. . .]Vρ.

The terms in brackets involve second derivatives of g. Unfortunately al- See handout 5
though the sum is a tensor, we cannot assert that the individual terms are
tensors: we need just one term involving Vρ alone.

If instead we consider the tensor Vα;βγ − Vα;γβ, the derivatives in V cancel
and we find See handout 5

Vα;βγ − Vα;γβ = [∇γ,∇β]Vα = Rρ
αβγVρ.

where Rρ
αβγ is the Riemann curvature tensor and is given by Do not try to

memorise this!!

Rρ
αβγ = Γρ

αγ,β − Γρ
αβ,γ + Γσ

αγΓ
ρ
σβ − Γσ

αβΓρ
σγ.

In flat spacetime, one can find a coordinate system in which the connection
and its derivatives = 0, and so

Rρ
αβγ = 0.

i.e. the Riemann tensor vanishes in flat spacetime. (i.e. covariant differenti-
ation is commutative in flat space.)
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12.3 Understanding the curvature tensor

Pictorially the relation

Vα;βγ − Vα;γβ = Rρ
αβγVρ,

corresponds to the following:

Figure: Vector parallel transported two ways around the
same loop does not match up at the end if there is curvature

Vector ~V is first parallel transported A → C → D, associated with V α
;βγ.

Then the same vector is taken A→ B → D, associated with V α
;γβ. Curva-

ture causes the vectors at D to differ.

Related to this, a vector parallel-transported around a loop in a curved space
changes, e.g.

Figure: Vector parallel transported on a sphere A to B to
C to A has changed by the time it gets back to A.
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12.4 Geodesic Deviation

Figure: Two nearby geodesics deviate from each other be-
cause of curvature

Consider the relative distance ~w between two nearby particles at P and Q
undergoing geodesic motion (free-fall). Can show that

D2wα

Dλ2
+Rα

γβδ ẋ
γẋδwβ = 0,

where ẋγ = dxγ/dλ etc. This is a tensor equation, the equation of geodesic deviation.
Here the capital D’s indicate ’absolute’ or ’total’ derivatives, i.e. derivatives
that allow for variations in components caused purely by curved coordinates,
so that we expect

D2wα

Dλ2
= 0,

in the absence of gravity.

The second term therefore represents the effect of gravity that is not removed
by free-fall, i.e. it is the tidal acceleration. In Newtonian physics tides are
caused by a variation in the gravitational field, ∇g, and since g = −∇φ, tides
are related to ∇2φ. This is another indication of the connection between
curvature and the left-hand side of ∇2φ = 4πGρ.

This is the quantitative version of the notion from chapter 7 of two particles
falling towards a gravitating mass moving on initially parallel-paths in space-
time which remain straight and yet ultimately meet.



Lecture 13

Einstein’s field equations

Objectives:

• The GR field equations

Reading: Schutz, 6; Hobson 7; Rindler 10.

13.1 Symmetries of the curvature tensor

With 4 indices, the curvature tensor has a forbidding 256 components. Luck-
ily several symmetries reduce these substantially. These are best seen in fully
covariant form:

Rαβγδ = gαρR
ρ
βγδ,

for which symmetries such as

Rαβγδ = −Rβαγδ,

and
Rαβγδ = −Rαβδγ.

can be proved. These relations reduce the number of independent compo-
nents to 20. Handout 6

These symmetries also mean that there is only one independent contraction

Rαβ = Rρ
αβρ,

because others are either zero, e.g.

Rρ
ραβ = gρσRσραβ = 0,

or the same to a factor of ±1. Rαβ is called the Ricci tensor, while its
contraction

R = gαβRαβ,

is called the Ricci scalar. NB Signs vary
between books. I
follow Hobson et
al and Rindler.
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13.2 The field equations

We seek a relativistic version of the Newtonian equation

∇2φ = 4πGρ.

The relativistic analogue of the density ρ is the stress–energy tensor Tαβ.

φ is closely related to the metric, and ∇2 suggests that we look for some
tensor involving the second derivatives of the metric, gαβ,γδ, which should be

a

(
2

0

)
tensor like Tαβ.

The contravariant form of the Ricci tensor satisfies these conditions, suggest-
ing the following:

Rαβ = kTαβ,

where k is some constant. (NB both Rαβ and Tαβ are symmetric.)

However, in SR Tαβ satisfies the conservation equations Tαβ
,α = 0 which in

GR become
Tαβ

;α = 0,

whereas it turns out that

Rαβ
;α =

1

2
R,αg

αβ 6= 0,

where R is the Ricci scalar. Therefore Rαβ = kTαβ cannot be right. Handout 6

Fix by defining a new tensor, the Einstein tensor

Gαβ = Rαβ − 1

2
Rgαβ,

because then

Gαβ
;α =

(
Rαβ − 1

2
Rgαβ

)
;α

= Rαβ
;α −

1

2
R;αg

αβ − 1

2
Rgαβ

;α = 0,

since ∇g = 0 and R;α = R,α. Therefore we modify the equations to

Rαβ − 1

2
Rgαβ = kTαβ.

These are Einstein’s field equations.

13.3 The Newtonian limit

The equations must reduce to∇2φ = 4πGρ in the case of slow motion in weak
fields. To show this, it is easier to work with an alternate form: contracting
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the field equations with gαβ then

gαβR
αβ − 1

2
Rgαβg

αβ = kgαβT
αβ,

and remembering the definition of R and defining T = gαβT
αβ,

R− 1

2
δα
αR = −R = kT,

since δα
α = 4. Therefore

Rαβ = k

(
Tαβ − 1

2
Tgαβ

)
.

Easier still is the covariant form:

Rαβ = k

(
Tαβ −

1

2
Tgαβ

)
.

The stress–energy tensor is

Tαβ =
(
ρ+

p

c2

)
UαUβ − pgαβ.

In the Newtonian case, p/c2 ¿ ρ, and so

Tαβ ≈ ρUαUβ.

Therefore
T = gαβTαβ = ρgαβUαUβ = ρc2.

Weak fields imply gαβ ≈ ηαβ, so g00 ≈ 1. For slow motion, U i ¿ U0 ≈ c,
and so U0 = g0αU

α ≈ g00U
0 ≈ c too. Thus

T00 ≈ ρc2,

is the only significant component.

The 00 cpt of Rαβ is:

R00 = Γρ
0ρ,0 − Γρ

00,ρ + Γσ
0ρΓ

ρ
σ0 − Γσ

00Γ
ρ
σρ.

All Γ are small, so the last two terms are negligible. Then assuming time-
independence,

R00 ≈ −Γi
00,i.

But, from the lecture on geodesics (chapter 11),

Γi
00 =

φ,i

c2
.
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Thus No longer
balancing
up/down indices
since we are
referring to
spatial
components only
in nearly-flat
space-time.

R00 ≈ − 1

c2
φ,ii = − 1

c2
∂2φ

∂xi∂xi
= − 1

c2
∇2φ.

Finally, substituting in the field equations

− 1

c2
∇2φ = k

(
ρc2 − 1

2
ρc2
)
,

or

∇2φ = −kc
4

2
ρ.

Therefore if k = −8πG/c4, we get the Newtonian equation as required, and
the field equations become

Rαβ − 1

2
Rgαβ = −8πG

c4
Tαβ.

Key points:

• The field equations are second order, non-linear differential equations
for the metric

• 10 independent equations replace ∇2φ = 4πGρ

• By design they satisfy the energy-momentum conservation relations
Tαβ

;α = 0

• The constant 8πG/c4 gives the correct Newtonian limit

• Although derived from strong theoretical arguments, like any physical
theory, they can only be tested by experiment.



Lecture 14

Schwarzschild geometry

Objectives:

• Schwarzschild’s solution

Reading: Schutz, 10; Hobson 9; Rindler 11; Foster & Nightingale 3.

14.1 Isotropic metrics

It is hard to solve the field equations. Symmetry arguments are essential.
The first such solution to the field equations was derived by Schwarzschild
in 1916 for spherical symmetry.

Consider first the Minkowski interval

ds2 = c2 dt2 − dr2 − r2
(
dθ2 + sin2 θ dφ2

)
.

The term in brackets expresses spherical symmetry or isotropy (no preference
for any direction). Any spherically symmetric metric must have a term of
this form. Thus a general isotropic metric can be written

ds2 = Adt2 −B dt dr − C dr2 −D
(
dθ2 + sin2 θ dφ2

)
.

• Expect symmetry under φ → −φ, θ → π − θ so no cross terms with
dr dθ or dφ dt.

• A, B, C and D cannot depend on θ or φ otherwise isotropy is broken
=⇒ functions of r and t only.

We can define a new radial coordinate r′ such that (r′)2 = D, and so the
metric becomes

ds2 = A′ dt2 −B′ dt dr′ − C ′ (dr′)2 − (r′)2
(
dθ2 + sin2 θ dφ2

)
.
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This metric is still general.

Dropping the primes, with this radial coordinate, the area of a sphere is still
4πr2, but r is not necessarily the ruler distance from the origin.

Finally we can transform the time coordinate using

dt = f dt′ + g dr,

choosing f and g such that dt is an exact differential and so that the cross
terms in dr dt′ cancel. We are left with Dropping primes

ds2 = A(r, t) dt2 −B(r, t) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
.

as the general form of an isotropic metric.

14.2 Schwarzschild metric

We specialise further by looking for time-independent metrics, i.e.

ds2 = A(r) dt2 −B(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
.

This is also static as it is invariant under the transform t→ −t.

We want to find the metric around a star such as the Sun, i.e. in empty
space where Tαβ = 0 and T = Tα

α = 0 =⇒ R = 0, so the field equations(
Rαβ −

1

2
Rgαβ

)
= −8πG

c4
Tαβ,

reduce to
Rαβ = 0.

Rαβ comes from

Rαβ = Γρ
αβ,ρ − Γρ

αρ,β + Γσ
αβΓρ

σρ − Γσ
αρΓ

ρ
σβ,

while

Γα
βγ =

1

2
gαδ (gδγ,β + gβδ,γ − gβγ,δ) .

Unfortunately there are no more short-cuts from this point. Work out Γ
then R. Much algebra leads to coupled, ordinary differential equations for See Q8, problem

sheet 4, Q5, sheet
5

A and B (e.g. Hobson et al p200) and one finds

A(r) = α

(
1 +

k

r

)
,

B(r) =

(
1 +

k

r

)−1

,
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α and k constants.

In weak fields we know that

A(r) → c2
(

1 +
2φ

c2

)
,

so α = c2 and k = −2GM/c2. We arrive at the Schwarzschild metric:

ds2 = c2
(

1− 2GM

c2r

)
dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2
(
dθ2 + sin2 θ dφ2

)
.

This applies outside a spherically-symmetric object, e.g. for motions of the
planets but not inside the Sun.

Schwarzschild’s solution is important as the first exact solution of the field
equations.

14.3 Birkhoff’s theorem

If one does not impose time-independence, i.e. A = A(r, t), B = B(r, t), and
solves Rαβ = 0, one still finds Schwarzschild’s solution (Birkhoff 1923), i.e.

The geometry outside a spherically symmetric distribution of
matter is the Schwarzschild geometry.

This means spherically symmetric explosions cannot emitt gravitational waves.

It also means that spacetime inside a hollow spherical shell is flat since it
must be Schwarzschild-like but have M = 0. Flat implies no gravity, the GR
equivalent of Newton’s “iron sphere” theorem.

Used in semi-Newtonian justifications of the Friedmann equations.

14.4 Schwarzschild radius

The Schwarzschild metric has a singularity at

r = RS =
2GM

c2
= 2.9

M

M¯
km.

Usually this is irrelevant, because the Schwarzschild radius lies well inside
typical objects where the metric does not apply, e.g. for the Sun RS ¿ R¯ =
7× 105 km, for Earth RS ≈ 1 cm.
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However, it is easy to conceive circumstances where objects have R < RS,
e.g consider the Galaxy as 1011 Sun-like stars. Then

RS = 2.9× 1011 km,

∼ 50× size of Solar system. Mean distance between N stars in a sphere
radius RS

d =

(
4πR3

S

3N

)1/3

= 1.00× 108 km.

Comparing with R¯ = 7 × 105 km, the stars have plenty of space: do not
require extreme density.

Finally, as a hint of things to come, consider the interval for r < RS. Then
gtt = c2 (1−RS/r) < 0 and grr = −(1 − Rs/r)

−1 > 0. Massive particles
must have ds2 > 0, but, ignoring θ and φ,

ds2 = c2 dτ 2 = gtt dt
2 + grr dr

2 > 0.

Given that gtt < 0 and grr > 0, we must have dr 6= 0 for r < RS to
give ds2 > 0. The passing of proper time therefore requires a change in
radial coordinate; the future “points” inwards. This leads to a collapse to
a singularity at r = 0. There is no such thing as a stationary observer for
r < RS.



Lecture 15

Schwarzschild equations of
motion

Objectives:

• Planetary motion, start.

Reading: Schutz, 11; Hobson 9; Rindler 11.

15.1 Equations of motion

Writing µ = GM/c2, the Schwarzschild metric becomes

ds2 = c2
(

1− 2µ

r

)
dt2 −

(
1− 2µ

r

)−1

dr2 − r2
(
dθ2 + sin2 θ dφ2

)
,

and the corresponding Lagrangian is

L = c2
(

1− 2µ

r

)
ṫ2 −

(
1− 2µ

r

)−1

ṙ2 − r2
(
θ̇2 + sin2 θ φ̇2

)
.

There is no explicit dependence on either t or φ, and thus ∂L/∂ṫ and ∂L/∂φ̇
are constants of motion, i.e (

1− 2µ

r

)
ṫ = k,

r2 sin2 θ φ̇ = h,

where k and h are constants. h is the GR equivalent of angular momentum
per unit mass.
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For k, recall that for “ignorable coordinates” such at t and φ, the corre-
sponding covariant velocity is conserved , i.e.

ẋ0 = g0βẋ
β = g00ẋ

0 = constant,

where the third term follows from diagonal metric. Now x0 = ct, while
g00 = 1− 2µ/r, so

ẋ0 =

(
1− 2µ

r

)
cṫ = kc.

Now p0 = mẋ0, where p0 is the time component of the four-momentum, and
in flat spacetime p0 = E/c where E is the energy, so

E = p0c = ẋ0mc = kmc2,

is the total energy for motion in a Schwarzschild metric.

NB k can be < 1, because in Newtonian terms it contains
potential energy as well as kinetic and rest mass energy.

For the r component we have

d

dλ

(
∂L

∂ṙ

)
− ∂L

∂r
= 0,

which gives

d

dλ

(
−
(

1− 2µ

r

)−1

2ṙ

)
−

(
2µc2

r2
ṫ2 +

(
1− 2µ

r

)−2
2µ

r2
ṙ2 − 2r

(
θ̇2 + sin2 θ φ̇2

))
.

while the θ component leads to:

d

dλ

(
−2rθ̇

)
−
(
−2r2 sin θ cos θ φ̇2

)
= 0.

The last equation is satisfied for θ = π/2, i.e. motion in the equatorial plane.
By symmetry, we need not consider any other case, leaving(

1− 2µ

r

)
ṫ = k,(

1− 2µ

r

)−1

r̈ +
µc2

r2
ṫ2 −

(
1− 2µ

r

)−2
µ

r2
ṙ2 − rφ̇2 = 0,

r2φ̇ = h.

For circular motion, ṙ = r̈ = 0, the second equation reduces to

µc2

r2
ṫ2 = rφ̇2,

and defining ωφ = dφ/dt and remembering µ = GM/c2, we get

ω2
φ =

GM

r3
,

Kepler’s third law! . . . somewhat luckily because of the choice of r and t.
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15.2 An easier approach

Rather than use the radial equation above, it is easier to use another constant
of geodesic motion:

~U · ~U = gαβẋ
αẋβ = constant.

This is effectively a first integral which comes from the affine constraint, or,
equivalently, from ∇~U

~U = 0. It side-steps the r̈ term.

More specifically we have
gαβẋ

αẋβ = c2,

for massive particles with λ = τ , and

gαβẋ
αẋβ = 0,

for photons.

15.3 Motion of massive particles

The equations to be solved in this case are thus(
1− 2µ

r

)
ṫ = k,

c2
(

1− 2µ

r

)
ṫ2 −

(
1− 2µ

r

)−1

ṙ2 − r2φ̇2 = c2,

r2φ̇ = h.

Substituting for ṫ and φ̇ in the second equation and multiplying by −(1 −
2µ/r) gives

ṙ2 +
h2

r2

(
1− 2µ

r

)
− 2µc2

r
= c2

(
k2 − 1

)
.

This has the form of an energy equation with a “kinetic energy” term, ṙ2

plus a function of r, “potential energy” equalling a constant.

Thus the motion in the radial coordinate is exactly equivalent to a particle
moving in an effective potential V (r) where

V (r) =
h2

2r2

(
1− 2µ

r

)
− µc2

r
,

or, setting µ = GM/c2,

V (r) =
h2

2r2

(
1− 2GM

c2r

)
− GM

r
.
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One can learn much about Schwarzschild orbits from this potential.

The equivalent in Newtonian mechanics is easy to derive:

ṙ2 + r2φ̇2 − 2GM

r
=

2E

m
,

and r2φ̇ = h. Thus

ṙ2 +
h2

r2
− 2GM

r
=

2E

m
,

so

VN(r) =
h2

2r2
− GM

r
.

GR introduces an extra term in 1/r3 in addition to the Newtionian 1/r
gravitational potential and 1/r2 “centrifugal barrier” terms.

15.4 Schwarzschild orbits

Three movies of orbits in Schwarzschild geometry were shown in the lecture.

Movies illustrate the following key differences between GR and Newtonian
predictions:

• Apsidal precession of elliptical orbits

• Instability of close-in circular orbits

• Capture orbits



Lecture 16

Schwarzschild orbits

Objectives:

• Planetary motion

Reading: Schutz, 11; Hobson 9; Rindler 11

16.1 Newtonian orbits

Figure: Newtonian effective potential: centrifugal barrier
always wins

• Centrifugal barrier always dominates as r → 0

• 2 types of orbits: unbound, hyperbolic E > 0; bound, elliptical E < 0.
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• Circular: ṙ = 0, r = rC such that r̈ = 0 =⇒ dV/dr = V ′(r) = 0.

• Newtonian elliptical orbits do not precess.

To see last point, expand potential around r = rC :

V (r) ≈ V (rc) +
1

2
V ′′(rC)(r − rC)2.

cf potential/unit mass of a spring kx2/2m, then r must oscillate with angular
frequency (“epicyclic frequency”)

ω2
r = V ′′(rC).

Given the Newtonian effective potential

V (r) =
h2

2r2
− GM

r
,

so

V ′(r) =
−h2

r3
+
GM

r2
.

V ′(rC) = 0 =⇒ h2 = GMrC , therefore

V ′′(rC) =
3h2

r4
C

− 2GM

r3
C

=
GM

r3
C

.

However, ω2
φ = GM/r3

C , thus ωr = ωφ. =⇒ always reach minimum r at
same φ, so no precession.

16.2 Schwarzschild orbits

Case 1. Large angular momentum h Reminder:
V (r) =
h2

2r2

(
1− 2µ

r

)
− µc2

r
.

Units of h on
plots are µc.

Figure: Schwarzschild effective potential for a large values
of h
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• Essentially Newtonian behaviour as small r is inaccessible.

• This case applies to the planets. e.g. for Earth h ≈ 104µc.

Case 2. Intermediate angular momentum h

Figure: Schwarzschild effective potential for an intermediate
value of h

• Bound near-elliptical and circular orbits still exist

• Qualitatively different capture orbits possible.

Case 3. Low angular momentum h

Figure: Schwarzschild effective potential for a low value of
h
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• No bound orbits.

16.2.1 Instability of circular orbits

The Schwarzschild effective potential is

V (r) =
h2

2r2

(
1− 2µ

r

)
− µc2

r
.

At the radius of circular orbits, dV (r)/dr = V ′(r) = 0 =⇒

V ′(r) = −h
2

r3
+

3h2µ

r4
+
µc2

r2
= 0,

or
µc2r2 − h2r + 3h2µ = 0,

so

rC =
h2 ±

√
h4 − 12h2µ2c2

2µc2
.

The smaller root is a maximum of V and unstable. The larger root is stable
while h2 > 12µ2c2, but once h2 ≤ 12µ2c2 there are no more stable circular orbits.
At this point

rC =
h2

2µc2
= 6µ =

6GM

c2
= 3RS.

In accretion discs around non-rotating black-holes no more energy is available
from within this radius. Calculate energy lost using E = kmc2.

Since ṙ = 0, r = 6µ and h2 = 12µ2c2:

c2(k2
C − 1) =

h2

r2

(
1− 2µ

r

)
− 2µc2

r
,

=
12µ2c2

36µ2

(
1− 2

6

)
− 2c2

6
,

= −1

9
c2.

Thus k2
C = 8/9. A mass dropped from rest at r = ∞ starts with k = 1, and

thus 1 − kC = 5.7 % of the rest mass must be lost to radiation. Compare cf “Newtonian”
value of
GM/6RS =
1/12 = 8.3%.

with ∼ 0.7 % H → He fusion.

Accretion power from black-holes is thus a conservative hypothesis in many
cases as it requires much less fuel than fusion, e.g. 1 star per week rather than
7 or 8. Rotating black-holes can be more efficient still, with a maximum of
42% (Kerr metrics). In realistic cases it is thought that about 30% efficiency
is possible.



Lecture 17

Precession and Photon orbits

Objectives:

• Precession of perihelion

• Start on orbits of photons

Reading: Schutz, 10 & 11; Hobson 9 & 10; Rindler 11.

17.0.2 Precession in the Schwarzschild geometry

As for Newton, oscillations in r occur at ω2
r = V ′′(rc) but now, setting

µ = GM/c2,

V (r) =
h2

2r2

(
1− 2µ

r

)
− µc2

r
= h2

(
1

2r2
− µ

r3

)
− µc2

r
.

First obtain a condition on h for circular orbits of radius r from V ′(r) = 0:

V ′(r) = h2

(
− 1

r3
+

3µ

r4

)
+
µc2

r2
= 0,

thus

h2 =
µc2r2

r − 3µ
.
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The second derivative is then

V ′′(r) = h2

(
3

r4
− 12µ

r5

)
− 2µc2

r3
,

=
µc2r2

r − 3µ

(
3

r4
− 12µ

r5

)
− 2µc2

r3
,

=
µc2

r3(r − 3µ)
(3r − 12µ− 2(r − 3µ)) ,

=
µc2(r − 6µ)

r3(r − 3µ)
.

Thus cf Newton µc2/r3

ω2
r =

(
r − 6µ

r − 3µ

)
µc2

r3
.

NB ω2
r → 0 as r → 6µ = 6GM/c2 as expected for the last circular orbit.

Therefore successive close approaches to the star (periastron) occur on a
period of

Pr =
2π

ωr

,

measured in terms of the proper time of the orbiting particle. During this
time the azimuthal angle increases by NB φ̇ = dφ/dτ 6=

dφ/dt

φ̇Pr =
2π

ωr

φ̇ =
2π

ωr

h

r2
radians.

Therefore, subtracting 2π, the periastron precesses by an amount

∆φ = 2π

[
1

r2

(
µc2r2

r − 3µ

)1/2(
r − 3µ

r − 6µ

)1/2(
r3

µc2

)1/2

− 1

]
,

= 2π

[(
r

r − 6µ

)1/2

− 1

]
rads/orbit

If r À µ this can be approximated as δφ ≈ 6πµ/r rads/orbit, or

δφ ≈ 6πGM

c2r
rads/orbit.

The precession is in the direction of the orbit (prograde).
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Figure: Prograde precession of an orbit started at r =
100GM/c2 at its most distant point.

17.1 Precession of the perihelion of Mercury

The orbit of Mercury is observed to precess at about 5600 arcseconds/century.
All but 42.98± 0.04 ”/century can be explained by Newtonian effects – pre- 1 arcsec = 1/3600

of a degreecession of the Earth’s axis causing the reference frame to change (5025”)

and perturbations from other planets (532”). Discrepancy known in 19th

century and ascribed to a new planet “Vulcan”. This bears certain
similarities to
“dark matter”.What does GR predict? rM = 5.55× 107 km, and since GM/c2 = 1.47 km

∆φ =
6π × 1.47

5.55× 107
= 0.103 arcsec/orbit.

Mercury’s orbital period PM = 0.24 yr, so GR predicts a precession of 100×
0.103/0.24 = 43 ”/century!

This is one of the classic experimental tests of GR. The same effect is seen
with dramatic effect in the orbits of binary pulsars where precession rates as
high as 17◦/year have been measured. Then used to measure the masses.

When Einstein developed GR, the anomalous precession of Mercury’s or-
bit was the only experimental evidence against Newton’s theory. Einstein
included the GR prediction in his 1916 paper presenting GR. Solving this
problem so beautifully must have been supremely satisfying. Consider the
beauty of GR here compared to alternatives such as altering Newton’s Law of
Gravity to 1/r2.00000016 as was also proposed . . . there is no contest!
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17.2 Equations of motion for photons

The equations of motion for photons read:(
1− 2µ

r

)
ṫ = k,

r2φ̇ = h,

c2
(

1− 2µ

r

)
ṫ2 −

(
1− 2µ

r

)−1

ṙ2 − r2φ̇2 = 0.

The only difference is the last equation which ends in c2 for massive particles.
(Remember it comes from gαβẋ

αẋβ = 0 for null paths.)

Substituting for ṫ and φ̇ in the second equation gives an “energy” equation
for photons:

ṙ2 +
h2

r2

(
1− 2µ

r

)
= c2k2.

The effective potential for light is thus

V (r) =
h2

2r2

(
1− 2µ

r

)
.

The Newtonian potential term −GM/r does not appear at all!

Figure: Effective potential for photons

Key points:

• Photons have equivalents of hyperbolic, circular and capture orbits.
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• There are no elliptical orbits for photons.

• The circular orbits are always unstable (maximum of V (r)).



Lecture 18

Deflection of light

Objectives:

• Deflection of light

Reading: Schutz, 10 & 11; Hobson 9 & 10; Rindler 11.

18.1 Circular photon orbits
Show
gravitational
lensing pictures.

V =
h2/2r2(1− 2µ/r).

Circular orbits: r = rC such that V ′(rC) = 0, or

− 1

r3
C

+
3µ

r4
C

= 0,

i.e.

rC =
3GM

c2
.

3× the Newtonian result rC = GM/c2, problem sheet 1.

18.2 Deflection of light by the Sun

Orbits with r À GM/c2 suffer a small deflection which is experimentally
measurable.
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Figure: Deflection of light by a mass. Black circle shows the
event horizon, so the deflection in this case is large.

To calculate light deflection, we need an equation relating r and φ without
the affine parameter, λ. Can obtain this by noting:

ṙ =
dr

dλ
=
dr

dφ

dφ

dλ
= φ̇

dr

dφ
=

h

r2

dr

dφ
.

Then the energy equation becomes

h2

r4

(
dr

dφ

)2

+
h2

r2

(
1− 2µ

r

)
= c2k2.

Making the substitution r = 1/u (also used for Newtonian orbits):

u4

(
− 1

u2

du

dφ

)2

+ u2(1− 2µu) =
c2k2

h2
,

and so (
du

dφ

)2

+ u2 − 2µu3 =
c2k2

h2
.

Finally, differentiating with respect to φ and dividing by 2du/dφ:

d2u

dφ2
+ u = 3µu2.

For large radii, r À µ, u¿ µ−1, the RHS can be neglected and we have the
SHM equation, thus:

u = a sinφ+ b cosφ,

where a and b are constants, or, without loss of generality, simply

u = a sinφ,

or r sinφ = 1/a = r0, a constant. This is the equation of a straight line with
impact parameter r0. As r →∞, u→ 0 gives φ = 0 or π.
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Figure: Straight from φ = 0 to φ = π with polar equation
r sinφ = a−1.

Now look for a better approximation u = u0 + u′ where |u′| ¿ u0 = a sinφ.
Then

d2u′

dφ2
+ u′ = 3µu2 ≈ 3µu2

0 = 3µa2 sin2 φ =
3µa2

2
(1− cos 2φ),

neglecting small terms on the right. Particular integral is

u′ =
3µa2

2

(
1 +

1

3
cos 2φ

)
,

so a better solution is

u = a sinφ+
3µa2

2

(
1 +

1

3
cos 2φ

)
.

Now r →∞ =⇒ u = 0 =⇒

sinφ = −3µa

2

(
1 +

1

3
cos 2φ

)
≈ −2µa,

since cos 2φ ≈ 1 for φ = 0, π. Therefore

φ ≈ −2µa, or π + 2µa.

Thus light is deflected by

∆φ = 4µa =
4GM

c2r0
.

This is 2× the Newtonian result (pure SR predicts zero).

For light grazing the Sun

∆φ =
4GM¯

c2R¯
=

4× 6.67× 10−11 × 2× 1030

(3× 108)2 × 7× 108
= 8.47×10−6 rads = 1.75 arcsec.

Confirmed from observations of radio sources to 2 parts in 104 Deflection of See Shapiro et al
in reading.light now an important tool in astronomy, “gravitational lensing”.

Famously tested by British astrophysicist Eddington in 1919 using observa-
tions of stars near the Sun during a total eclipse. Made Einstein famous.
Eddington the source of the well-known quote “Interviewer: Professor Ed-
dington, is it true that only three people understand Einstein’s theory? Ed-
dington: Who is the third?”



Lecture 19

Schwarzschild Black holes

Objectives:

• Beyond the Schwarzschild horizon

Reading: Schutz 11; Hobson 11; Rindler 12

19.1 The Schwarzschild horizon

The Schwarzschild metric

ds2 = c2
(

1− 2µ

r

)
dt2 −

(
1− 2µ

r

)−1

dr2 − r2 dΩ2,

(dΩ2 short-hand for angular terms) is singular at

r = RS = 2µ =
2GM

c2
.

This is a coordinate singularity, similar to the singularity of the 2-sphere
metric

ds2 =
dr2

1− r2/R2
+ r2 dθ2,

when r = R at the equator.

Consider radially moving particles for which dθ = dφ = 0. Then we have

ds2 = gtt dt
2 + grr dr

2.

For r < 2µ, gtt < 0, grr > 0. For massive particles a time-like interval
ds2 > 0 therefore requires dr 6= 0 and so ṙ can never change sign.
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A particle which enters the event horizon can never escape.
r is time-like, t is space-like. Oblivion at r = 0 is the future.

Now consider photons (ds = 0):

c dt = ±
(

1− 2µ

r

)−1

dr,

+ for outgoing, − for incoming. Integrating

ct = ±
∫

dr

1− 2µ/r
= ±

∫
r dr

r − 2µ
= ±

∫ (
r − 2µ

r − 2µ
+

2µ

r − 2µ

)
dr,

thus See reading on
web pages on the
“Shapiro delay”
for an
experimental
measurement of
this.

ct = ± (r + 2µ ln |r − 2µ|) + constant.

Spacetime diagram:

Figure: Spacetime diagram in r and t coordinates represent-
ing a series of in- and out-going photon worldlines. On the
left, ingoing worldlines move down the ct axis. Wavy line
represents the singularity at r = 0. The dashed line is the
event horizon at r = RS. The green line shows the path of
the same ingoing photon on each side of r = RS.

• At any event E, the future lies between the worldlines of ingoing and
outgoing photons, on the same side as their direction of travel.
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• As r → RS, lightcones are squeezed; worldlines take infinite coordinate time t
to reach RS.

• For r < RS, lightcones are rotated and point towards r = 0. Particles
crossing r = RS can never again be seen from r > RS, thus the “event
horizon”.

19.2 Free-fall time

The proper time to r = RS and even to r = 0 is finite: for r < RS = 2µ can
write

c2 dτ 2 =

(
2µ

r
− 1

)−1

dr2 − c2
(

2µ

r
− 1

)
dt2 − r2 dΩ2.

dτ maximum if dt = dΩ = 0. Thus the maximum time one has before
reaching the singularity from r = RS is

τm =
1

c

∫ 2µ

0

(
2µ

r
− 1

)−1/2

dr =
πµ

c
=
πGM

c3
= 15× 10−6

(
M

M¯

)
sec .

e.g. 4.2 hours for M = 109 M¯. Any use of a rocket shortens this!

19.3 Kruskal-Szekeres coordinates

Schwarzschild coordinates are singular at r = RS and poor for r < RS. In
1961 Kruskal found coordinates regular for all r > 0. Consider the incom-
ing/outgoing photon worldlines:

ct = −r − 2µ ln |r − 2µ|+ p,

ct = +r + 2µ ln |r − 2µ|+ q,

where p and q are integration constants. The idea is to use p and q to label
events, i.e. as coordinates. Photon paths form a rectangular grid in (p, q)
and the interval becomes

ds2 =

(
1− 2µ

r

)
dp dq − r2 dΩ2.

The following transform removes the awkward 1− 2µ/r:

p̄ = + exp(p/4µ),

q̄ = − exp(−q/4µ).

A rotation gives time- and space-like rather than null coords:

v = (p̄+ q̄)/2,

u = (p̄− q̄)/2.
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These are Kruskal-Szekeres coordinates. The interval becomes

ds2 =
32µ3

r
e−r/2µ

(
dv2 − du2

)
− r2dΩ2,

where

u2 − v2 =

(
r

2µ
− 1

)
er/2µ.

Null radial paths, ds2 = dΩ2 = 0 =⇒

v = ±u+ constant,

i.e. ±45◦ like Minkowski!

r = 0 =⇒ v2 − u2 = 1, i.e. hyperbolae.

Figure: Spacetime diagram in u, v Kruskal coordinates.
Light-cones now have same structure as Minkowski, so the
future of any even is the region over it within 45◦ of the ver-
tical.

Kruskal spacetime diagram:

• Region (1) is the region r > RS in which we live; region (2) represents
r < RS.

• Future of any event is contained in ±45◦ “lightcone” directed upwards.
Once inside region (2), the future ends on the upper r = 0 singularity.
Can pass from (1) to (2) but not back again.

• Region (1’) similar to (1) but disconnected from it: a different Universe
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• Lower shaded line is a “past singularity”, out of which particles emerge.
Once you have entered region (2) you can never leave; once you have
left (2’) you can never return: a “white hole”

Whether regions
1’ and 2’ have any
reality is unclear.



Lecture 20

The FRW metric

Objectives:

• Friedmann-Robertson-Walker metric

Reading: Schutz 12; Hobson 14; Rindler 16

20.1 Isotropy and homogeneity

On large scales, the Universe looks similar in all directions, and, in addition,
assuming that ours is not a special location (“Copernican principle”), we
assert that on large scales the Universe is

• isotropic: no preferred direction

• homogeneous: the same everywhere.

20.2 Cosmic time

Homogeneity implies a synchronous time t can be defined so that at a given
t, physical parameters such as density and temperature are the same every-
where. Thus we can write the interval

ds2 = c2 dt2 − dl2,

where
dl2 = gij dx

i dxj,
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i.e. spatial terms only. g0i = 0 because isotropy =⇒ no preferred direction
(cf Schwarzschild). For dl2 we look for a 3D-space of constant curvature,
analagous to the surface of a sphere.

Consider the surface of a sphere in Euclidean 4D. Using Cartesian coor-
dinates (x, y, z, w), but replacing (x, y, z) by spherical polars (ρ, θ, φ), we Using ρ for the

radial coord, to
save r for later;
see below.

have
dl2 = dρ2 + ρ2 dΩ2 + dw2,

where dΩ2 is short-hand for the angular terms. Also

x2 + y2 + z2 + w2 = ρ2 + w2 = R2,

and so
ρ dρ+ w dw = 0.

Therefore

dw2 =
ρ2 dρ2

w2
=

ρ2 dρ2

R2 − ρ2
,

and so

dl2 = dρ2 +
ρ2 dρ2

R2 − ρ2
+ ρ2 dΩ2,

giving

dl2 =
dρ2

1− (ρ/R)2
+ ρ2 dΩ2.

This is a homogeneous, isotropic 3D space of (positive) curvature 1/R2.
Negative and zero curvature are also possible, and setting ρ = Rr, all three
cases can be expressed as

dl2 = R2

(
dr2

1− kr2
+ r2 dΩ2

)
,

where k = −1, 0 or +1.

In general we must allow for R to be an arbitrary function of time R(t) (not
position since that would destroy homogeneity), thus we arrive at

ds2 = c2 dt2 −R2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θ dφ2

)
.

This is the Friedmann-Robertson-Walker metric. It was first derived by
Friedmann in 1922, and then more generally by Robertson and Walker in
1935. It applies to any metric theory of gravity, not just GR.

20.3 Geometry of the Universe

Three cases:
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k = 1 Positive curvature, closed universe.

k = 0 Zero curvature, flat universe (flat space, not flat spacetime)

k = −1 Negative curvature, open Universe.

An alternative form of the metric is often useful. For k = 1, setting r = sinχ,
the interval becomes

ds2 = c2 dt2 −R2(t)(dχ2 + sin2 χdΩ2).

The circumference of a circle of proper radius r =
∫
Rdχ = Rχ is then

clearly

C = 2πR sinχ = 2πR sin
( r
R

)
,

while the area of a sphere of the same radius is

A = 4π (R sinχ)2 = 4πR2 sin2
( r
R

)
,

and its volume is

V =

∫ χ

0

(
4πR2 sin2 χ

)
Rdχ = 2πR3

[
r

R
− 1

2
sin

(
2r

R

)]
.

As r → πR, C and A → 0, and V → 2π2R3 is finite, hence a “closed”
universe, directly analogous to the surface of a sphere. In a closed

Universe you
could keep
travelling in one
direction and yet
return to where
you started.

In general we can write the alternative FRW metric as

ds2 = c2 dt2 −R2(t)
(
dχ2 + S2

k(χ) dΩ2
)
,

where

Sk(χ) =


sinχ, for k = 1,

χ, for k = 0,

sinhχ, for k = −1.

20.4 Redshift

The wavelength of light from astronomical sources is a crucial, easily mea-
sured observable. Consider two pulses of light emitted at times t = te and
t = te + δte by an object at χ towards an observer at the origin who picks
them up at t = to t = to + δto.

For photons travelling towards the origin, since ds = 0

c dt = −R(t) dχ,
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Therefore

χ =

∫ to

te

c dt

R(t)
=

∫ to+δto

te+δte

c dt

R(t)
.

Subtracting the first integral from the second:∫ to+δto

to

c dt

R(t)
−
∫ te+δte

te

c dt

R(t)
= 0.

For small intervals R(t) is almost constant, so

δto
R(to)

=
δte
R(te)

.

Therefore the redshift z is given by

1 + z =
λo

λe

=
νe

νo

=
δto
δte

=
R(to)

R(te)
.

1 + z is thus the factor by which the Universe has expanded in between
emission and reception of the light.

20.5 Hubble’s Law

The universal “fluid” (= galaxies) is at rest in comoving coordinates r or χ,
θ and φ. Expansion of the Universe is contained in the size factor R(t).

Consider the proper distance to a galaxy at radius χ

dP =

∫ χ

0

R(t) dχ = R(t)χ,

Since χ is fixed, the rate of recession of the galaxy is

v =
d

dt
(dP ) = Ṙχ =

Ṙ

R
dP .

Identifying
H(t) = Ṙ/R,

we have

v = H(t)dP

which is Hubble’s Law, while H(t) is Hubble’s “constant” = H(t0) = H0

today. Hubble’s Law is
thus a direct
outcome of
homogeneity and
isotropy.



Lecture 21

Dynamics of the Universe

Objectives:

• The Friedmann equations

Reading: Schutz 12; Hobson 14; Rindler 16

21.1 Friedmann’s equation

The evolution of the Universe in GR is determined as follows:

1. The FRW interval =⇒ the metric, e.g. grr = −R2/(1− kr2)

2. The metric =⇒ Γα
βγ, the connection.

3. The metric and connection =⇒ Rαβ, the Ricci tensor.

4. The Ricci tensor and field equations =⇒ differential equations for the
size factor R and the fluid density ρ.

Jumping straight in at step 4, consider See handout 7

Rtt = 3
R̈

R
.

Use field equations in the form

Rαβ = k

(
Tαβ −

1

2
Tgαβ

)
.

Assume perfect fluid:

Tαβ =
(
ρ+

p

c2

)
UαUβ − pgαβ.
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Fluid is static in co-moving coordinates of FRW metric so U i = 0 and

gαβU
αUβ = gttU

tU t = c2,

so since gtt = c2, U t = 1. Hence

Ut = gttU
t = c2,

and
Ttt =

(
ρ+

p

c2

)
c4 − pc2 = ρc4,

while

T = gαβT
αβ =

(
ρ+

p

c2

)
gαβU

αUβ − pgαβg
αβ =

(
ρ+

p

c2

)
c2 − 4p = ρc2 − 3p.

Therefore

3
R̈

R
= k

(
ρc4 − 1

2
(ρc2 − 3p)c2

)
.

Putting k = −8πG/c4 we obtain

R̈ = −4πG

3

(
ρ+

3p

c2

)
R. (21.1)

This is the acceleration equation.

Similarly the rr, θθ and φφ components all lead to:

Ṙ2 + kc2 =
8πG

3
ρR2. (21.2)

This is the Friedmann equation.

Finally, taking the time derivative of the Friedmann equation and substitut-
ing for R̈ from the acceleration equation it is simple to show: Prove this

ρ̇+
3Ṙ

R

(
ρ+

p

c2

)
= 0. (21.3)

which is the fluid equation. Alternatively this comes from Tαβ
;α = 0.

21.1.1 Newtonian interpretation

Each of Eqs 21.1, 21.2 and 21.3 has an approximate Newtonian interpreta-
tion. If one considers an expanding uniform density sphere then

R̈ = −4πG

3
ρR.
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There is no Newtonian explanation for the pressure term in the acceleration
equation. Conserving energy for a particle on the edge of such a sphere gives:

1

2
Ṙ2 − 4πG

3
ρR2 =

E

m
.

Newtonian equivalent for curvature term kc2 is total energy per unit mass.
Finally the fluid equation follows directly from

T dS = dU + p dV,

setting dS = 0 (reversible adiabatic, no temperature gradients) and us-
ing mass–energy equivalence. Such Newtonian interpretations are a fudge:
Eqs 21.1, 21.2 and 21.3 are relativistic.

21.2 The cosmological constant

In 1917 Einstein modified the field equations to read

Rαβ − 1

2
Rgαβ + Λgαβ = kTαβ,

where Λ is the cosmological constant. Still satisifes Tαβ
;α = 0 since gαβ

;γ = 0.
Nowadays, it is usual to place the new term on the right as the stress–energy
tensor of the vacuum.

Rαβ − 1

2
Rgαβ = k

(
Tαβ − Λ

k
gαβ

)
.

Second term in brackets on the right has the form of a perfect fluid(
ρΛ +

pΛ

c2

)
UαUβ − pΛg

αβ,

if
ρΛ +

pΛ

c2
= 0,

and

pΛ =
Λ

k
= − Λc4

8πG
,

and thus

ρΛ =
Λc2

8πG
.

i.e. a fluid of constant density and negative pressure. This is “dark
energy”, perhaps
the most puzzling
problem in
modern physics.
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21.2.1 Einstein’s static universe

Negative pressure allows a static Universe. From

R̈ = −4πG

3

(
ρ+

3p

c2

)
R,

R̈ can be zero if

ρ+
3p

c2
= 0.

Here ρ and p are the sums of contributions from all components. Considering
matter and Λ only, for matter pM ¿ ρMc

2 so

ρ+
3p

c2
≈ ρM + ρΛ +

3pΛ

c2
= ρM − 2ρΛ.

Thus

R̈ = −4πG

3
(ρM − 2ρΛ)R,

which is zero if ρM = 2ρΛ. This is Einstein’s static universe. Unfortunately
it would not be static for long since it is unstable. Consider a perturbation
ρM = 2ρΛ + ρ′, R = R0 +R′. To first order

R̈′ = −4πG

3
ρ′R0.

If R′ > 0 we expect ρ′ < 0 since matter is diluted as the universe expands,
hence R̈′ > 0 and the perturbation will grow =⇒ instability. The universe
either contracts or expands away from R = R0.

Λ therefore can give a static but not a stable universe. Had Einstein realised
this, he could have predicted an expanding or contracting universe. Perhaps
this was why he once referred to the cosmological constant as “my greatest
blunder” (as quoted by Gamow, 1970).



Lecture 22

Cosmological distances

Objectives:

• Friedmann-Robertson-Walker metric

Reading: Schutz 12; Hobson 14 and 15; Rindler 17

22.1 Distances

There is no one “distance” in cosmology. Using the metric

ds2 = c2 dt2 −R2(t)
(
dχ2 + S2(χ) dΩ2

)
,

the easiest to define is the ruler or proper distance dP

dP = R0χ,

where R0 is the present size factor of the Universe.

A more practical measure is the luminosity distance defined as the distance
at which the observed flux f from an object equals the standard Euclidean
formula:

f =
L

4πd2
L

,

where L is the luminosity.

Consider a source S at the origin (can always shift origin) and an observer
O at χ. When light reaches O at time to, it is spread equally (isotropy) over
an area

A = 4πR2
0S

2(χ).
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The flux observed is therefore

f =
L

4πR2
0S

2(χ)(1 + z)2
.

The (1 + z)2 factor comes from the redshift which reduces both the energy
and arrival rate of the photons. The R2(t)S2(χ) comes from the angular
terms of the FRW metric. Therefore

dL = R0Sk(χ)(1 + z).

The angular diameter distance dA is defined such that

α =
l

dA

,

where α is the angle subtended by an object of size l.

Sketch:

Figure: The angular size defined at emission is preserved
during expansion because the photons travel along radial
paths towards the origin.

Photons travel from source to observer along radial paths. Angular size
defined at time of emission. From the FRW metric,

l = R(te)Sk(χ)α,

and therefore

dA = R(te)Sk(χ) =
R0Sk(χ)

1 + z
,

since

1 + z =
R0

R(te)
.

In each case we need χ which is connected to the time of emission te and
observation t0 through

χ =

∫ t0

te

c dt

R(t)
.
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We can replace t by z where

1 + z =
R0

R
,

so

dz = −R0

R2
Ṙ dt,

and hence

χ = −
∫ 0

z

cR2

R0Ṙ

1

R
dz,

so, remembering H = Ṙ/R,

R0χ =

∫ z

0

c dz

H(z)
.

Thus χ, and hence the distances, are sensitive to the expansion history of
the Universe encoded in H(z). e.g. flux vs redshift (“Hubble diagrams”) of
supernovae =⇒ a cosmological constant.

22.2 The future of our Universe

We now believe that our Universe is 74% cosmological constant, 26% matter
(5% baryonic). In the future Λ will dominate since ρM ∝ R−3 while ρΛ is
constant, so the Friedman equation tends to

Ṙ =

(
8πG

3
ρΛ

)1/2

R,

the curvature term being constant becomes negligible compared to the above
terms. This equation describes a de Sitter universe in which there is only a
cosmological constant. Clearly

R = R0 exp(t/τ),

where t is measured from the present and

τ =

(
3

8πGρΛ

)1/2

= 1.6× 1010 yr,

for our Universe.

Outrunning a photon: consider a photon emitted at time t = te (counting
from the present). By time t it will have reached comoving radius χ given
by

χ(t) =

∫ t

te

c dt

R(t)
=

c

R0

∫ t

te

e−t/τ dt =
cτ

R0

(
e−te/τ − e−t/τ

)
.
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As t→∞, the photon has reached a proper distance as measured in today’s
Universe (R = R0) of

dP = R0χ = cτe−te/τ .

Implication: photons in a de Sitter unverse never catch up distant parts of
the Universe. The later a photon is emitted, the shorter the distance it
travels in today’s terms. Put differently, we see no photons that a galaxy at
proper distance dP emitts after a time

te = τ ln
cτ

dP

.

Were we to observe a clock in such a galaxy, we would see it get slower
and slower, never quite making it to te. The galaxy meanwhile becomes
increasing redshifted and ever fainter. This is an external event horizon in
fact.

As a consequence, in the future, all galaxies now in the Hubble flow away
from us will disappear from our view, unless the “dark energy” driving the
expansion runs out of steam.



Lecture 23

Linear GR

Objectives:

• Linearised GR

Reading: Schutz 8; Hobson 17; Rindler 15

23.1 Approximating GR

The non-linearity of GR makes it difficult to solve in most situations. It is
useful to develop an approximate form of the field equations for the common
case of weak fields.

In weak fields we can assume that there are coordinates xα in which the
metric can be written

gαβ = ηαβ + hαβ,

where |hαβ| ¿ 1. Using this the field equations

Rαβ −
1

2
Rgαβ = kTαβ,

can be approximated to first order in h.

e.g. the connection

Γα
βγ =

1

2
gαδ (gδγ,β + gβδ,γ − gβγ,δ) ,

=
1

2
ηαδ (hδγ,β + hβδ,γ − hβγ,δ) ,

is first-order in h, so the Riemann tensor boils down to

Rρ
αβγ = Γρ

αγ,β − Γρ
αβ,γ.
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Eventually one finds: Do not try to
remember this!

h,αβ + 2hαβ − ηγδ (hαγ,δβ + hδβ,αγ)− (2h− hσρ
,σρ) ηαβ = 2kTαβ,

where h = ηαβhαβ and

2 = ησρ∂σ∂ρ = ∂σ∂
σ =

1

c2
∂2

∂t2
−∇2,

is the D’Alembertian or wave operator.

23.2 Lorenz Gauge

The choice of hαβ is not unique; it depends on the underlying coordinates.
This can be used to simplify the linearised equations. For instance consider
the coordinate transform

x′α = xα + εα,

with εα and its derivatives ¿ 1 (easier here not to put primes on indices;
hαβ is not a tensor). Then

gαβ =
∂x′γ

∂xα

∂x′δ

∂xβ
g′γδ,

= (δγ
α + εγ,α)

(
δδ
β + εδ,β

)
g′γδ,

so
ηαβ + hαβ = (δγ

α + εγ,α)
(
δδ
β + εδ,β

) (
ηγδ + h′γδ

)
.

Thus
ηαβ + hαβ = ηαβ + εδ,βηαδ + εγ,αηγβ + h′αβ,

and so
h′αβ = hαβ − εα,β − εβ,α.

Very similar to gauge transformation of EM where the physics is invariant
to transforms of the 4-potential of the form

A′α = Aα + ψ,α,

where ψ is some scalar field.

Choose εα to simplify field equations. In particular choosing coordinates
such that

hαβ
,β =

1

2
ηαβh,β,

(“Lorenz gauge”), then the field equations reduce to

2hαβ −
1

2
ηαβ2h = 2kTαβ.
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Further simplification comes from defining

h̄αβ = hαβ −
1

2
hηαβ,

(“trace reversal” since h̄ = −h). The Lorenz gauge becomes

h̄αβ
,β = 0,

while the field equations reduce to

2h̄αβ = 2kTαβ,

or in full: (
1

c2
∂2

∂t2
−∇2

)
h̄αβ = −16πG

c4
Tαβ.

There is still some remaining freedom: the same relations survive coordinate
transforms x′α = xα + εα provided

2εα = 0.

23.3 Newtonian limit [not in lectures]

Consider a time-independent, weak-field. Setting k = −8πG/c4, and 2 =
−∇2, the field equations become

∇2h̄αβ =
16πG

c4
Tαβ,

which has the form of Poisson’s equation. If all mass is stationary, then only
T 00 = ρc2 is significant so we have

∇2h̄00 =
16πGρ

c2
,

and by analogy with
∇2φ = 4πGρ,

we can immediately write

h̄00 =
4φ

c2
,

where φ is the Newtonian potential. All other components = 0.

From this we deduce h = −h̄ = −4φ/c2, and since

hαβ = h̄αβ +
1

2
hηαβ,
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we find

h00 = h11 = h22 = h33 =
2φ

c2
,

Finally, since gαβ = ηαβ + hαβ, and lowering indices we find

ds2 = c2
(

1 +
2φ

c2

)
dt2 −

(
1− 2φ

c2

)(
dx2 + dy2 + dz2

)
.

This approximate metric is useful for studying gravitational lensing around
anything more complex than a point mass, e.g. a star plus planets, or clusters
of galaxies.



Lecture 24

Gravitational waves

Objectives:

• Linearised GR

Reading: Schutz 9; Hobson 17; Rindler 15

24.1 Gravitational waves

In the vacuum, Tαβ = 0, and so

2h̄αβ =

(
1

c2
∂2

∂t2
−∇2

)
h̄αβ = 0.

This is the wave equation for waves that travel at the speed of light c. It has
solution

h̄αβ = Aαβ exp(ikρx
ρ).

Remembering that
2 = ηρσ∂ρ∂σ,

and substituting the solution into the wave equation gives

ηρσkρkσh̄
αβ = 0.

For non-zero solutions we must have

ηρσkρkσ = kσkσ = 0,

i.e. ~k is a null vector. This is the wave vector and usually written ~k =
(ω/c,k). kσkσ = 0 is then just the familiar ω = ck.
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24.2 Gauge conditions

Our solution must satisfy the Lorenz gauge

h̄αβ
,β = 0,

which leads to the four conditions:

Aαβkβ = 0. (24.1)

Four more conditions come from our freedom to make coordinate transfor-
mations with any vector field εα satisfying This allows us to

remove waves in
the coordinates.2εα = 0.

The standard choice is called the transverse–traceless (TT) gauge in which

ηαβA
αβ = 0, (24.2)

which makes Aαβ traceless, and

Ati = 0. (24.3)

Eq. 24.1 can be written as

Aαtkt + Aαiki = 0,

and setting α = t, Eq. 24.3 =⇒ Att = 0, thus Atα = Aαt = 0.

Specialising to a wave in the z-direction, kα = (kt, 0, 0, kz), then Eq. 24.1
shows that

Aαtkt + Aαzkz = Aαzkz = 0,

so
Aαz = 0,

hence “transverse”. Finally, since Att = Azz = 0, Eq. 24.2 shows that

Axx + Ayy = 0,

and so

Aαβ =


0 0 0 0

0 a b 0

0 b −a 0

0 0 0 0

 ,

where a and b are arbitrary constants.

The 2 degrees of freedom represented by a and b correspond
to 2 polarisations of gravitational waves.
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Figure: The two polarisations can be separated into tidal
distortions at 45◦ to each other. The figure shows the ex-
tremes of the distortion that occur to a ring of freely floating
particles as a gravitational wave passes (directly in or out of
the page). The extent of the distortion is very exaggerated
compared to reality!

The two polarisations give varying tidal distortions perpendicular to the
direction of travel.

24.3 Generation of gravitational waves

The equation
2h̄αβ = 2kTαβ

is analagous to the equation in the Lorenz gauge in EM

2φ =
ρ

ε0
,

which has solution

φ(t, r) =

∫
[ρ]

4πε0R
dV,

where [ρ] = ρ(t−R/c,x), R = |r− x|. Thus by analogy:

h̄αβ = 2k

∫ [
Tαβ

]
4πR

dV

If the origin is inside the source, and |r| = r À |x| (compact source), we are
left with the far-field solution

h̄αβ(t, r) ≈ 2k

4πr

∫
Tαβ(t− r/c,x) dV.

Using the energy-momentum conservation relation Tαβ
,β = 0 one can then

show that Q16, problem
sheet 2h̄ij ≈ −2G

c4r

d2I ij

dt2
,
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where

I ij =

∫
ρxixj dV,

is the moment-of-inertia or quadrupole tensor.

No gravitational dipole radiation because conservation of mo-
mentum means that

∫
ρxi dV is constant.

24.3.1 Estimate of wave amplitude

Consider two equal masses M separated by a in circular orbits in the x–y
plane of angular frequency Ω around their centre of mass. Then

Ixx =

∫
ρx2 dV = 2M

(a
2

cos Ωt
)2

=
1

4
Ma2 (1 + cos 2Ωt) .

Differentiating twice gives

h̄xx =
2GMa2Ω2

c4r
cos 2Ωt.

Other terms similar. Consequences:

• Gravitational wave has twice frequency of the source (quadrupole ra-
diation)

• Amplitude ∼ GMa2Ω2/c4r.

Example: M = 10 M¯, a = 1 R¯, at r = 8 kpc (Galactic centre). Then
Kepler3

Ω2 =
G(M1 +M2)

a3
= 7.8× 10−4 rad2 s−2.

(Orbital period 38 mins, GW period 19 mins).

Find h ∼ 2 × 10−21. This is a tiny distortion of space, < 0.1 mm in the
distance from us to the nearest star.



Lecture 25

Detection of gravitational
waves

Objectives:

• GRW detection

Reading: Schutz 9; Hobson 17; Rindler 15

25.1 Detecting Gravitational waves

The decreasing orbital period of binary pulsar provides strong but indirect
evidence of gravitational waves. Direct detection of gravitational waves is
one of the greatest challenges of modern experimental physics. The main
possible sources are:

• Very close pairs of stars: white dwarfs, neutron stars and black-holes
in orbits of a few minutes.

• Mergers of super-massive black-holes at the centres of galaxies. Most
powerful events of all – ∼ 4% of total mass in gravitational waves. e.g.
could release ∼ 107 M¯ of energy within about an hour, L ∼ 1024 L¯ À
rest of observable Universe!

• Asymmetric rapidly rotating neutron stars, e.g. in X-ray binaries.

• Supernovae

• Fluctuations of the very early Universe

GWR can give a completely new view of these exotic targets, and could
provide the first ever test of GR in the strong field φ ∼ c2 regime.
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25.2 Detectors

Two types:

1. Resonant bars (Joseph Weber, 1960s).

2. Michelson interferometers (suspended mirrors act as test masses). Mir-
rors > 99.999% reflection. Existing (main ones):

(a) LIGO: 2 interferometers in the USA with 4 km long arms

(b) VIRGO: France/Italy, 3 km arms

(c) GEO600: Germany/UK, 600 m arms

Planned: LISA, 2 million km space-based interferometer.

Multiple detectors vital for believable result.

25.3 Ground-based detection

LIGO: 4 km-long arms =⇒ detect ∆l ∼ 10−18 m for h ∼ 10−21.

Advantages:

• Short arms good for high-frequency inspirals. e.g. neutron star pairs
reach ∼ 1 kHz.

• High laser power possible.

• Can be upgraded.

Disadvantages:

• Seismic noise limits low frequencies, so most common sources unde-
tectable

• Short arms require very high precision

• Events are very short lived (< 1 second), making them hard to detetect

Current LIGO can detect merging neutron stars out to 10 Mpc. However,
no detection to date: such events are probably rare.

Advanced LIGO will raise max distance to 100 Mpc, 1000× increase in vol-
ume. Expect several events per year.
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25.4 Space-based detection

Space offers:

• Potentially long interferometer arms

• No seismic noise so sensitive to much lower frequencies, e.g. early
Universe, merger of supermassive black-holes, early detection of lower
mass mergers and commoner types of binary star.

but

• low laser power limits high frequency sensitivity.

LISA is a proposed interferometer with spacecraft 2 million km apart.

25.5 Numerical relativity

At low signal-to-noise, one needs to know the shape of the waveform to
detect it. Thus computer simulations are part of the detection effort. Good
progress has been made in understanding the merger of two black-holes.

Prospects for the first direct detection are good; its now down to the Universe
to give us some observable events.

Watch this space!
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