QM4226
 QUANTUM THEORY \& HOMEWORK PROBLEMS 4

These questions form part of the continuous assessment of the course. To be handed in by ...

1. Construct the state:
$\left|j_{1} j_{2} J M>=\right| 3 / 215 / 21 / 2>$ using the eigenstates $\left.\left|j_{1} m_{1}>\right| j_{2} m_{2}\right\rangle$, of the one-particle operators, using the tables of Clebsch-Gordan coefficients.
2. Repeat for $\mid 1 / 213 / 21 / 2>$.
3. Work out $\left\langle J_{1 Z}\right\rangle$ for the states in (1) and (2).
4. A quantum state is in a superposition of the orthonormal eigenstates:
$\chi=\sqrt{\frac{2}{3}}\left|3 / 215 / 21 / 2>+\sqrt{\frac{1}{3}}\right| 1 / 213 / 21 / 2>$.
Work out $\left\langle\mathbf{J}_{\mathbf{1}} . \mathbf{J}_{\mathbf{2}}\right\rangle$.
5. For the same state, work out $<J_{1+} J_{2-}+J_{2+} J_{1-}>$.
6. Two electrons interact via a potential: $V(\mathbf{r})=A \sigma_{1} \cdot \sigma_{2}$

The electrons are in a orthonormal spatial eigenstate, and a spin singlet state, ie $\Psi(\mathbf{r}) \chi=R_{n s}(r) Y_{00} \sqrt{\frac{1}{2}}\left(\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2}\right)$ Work out the interaction energy $<V(\mathbf{r})>$.
7. $\mathbf{n}=(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$ is a vector of unit length, representing the orientation of the proton-proton axis. Show that:
$(\mathbf{S . n})=\frac{1}{2}\left[S_{+} e^{-i \phi} \sin \theta+S_{-} e^{i \phi} \sin \theta+2 S_{z} \cos \theta\right]$
Represent (S.n as a matrix, using the eigenstates of $\mathbf{S}_{\mathbf{z}}$.
Work out the expectation value of (S.n) ${ }^{2}$ if a quantum system is in the spin-state $\chi=\sqrt{\frac{2}{3}}\left|\alpha>+\sqrt{\frac{1}{3}}\right| \beta>$.
8. Show that $R_{\pi} e^{-i \beta_{n} \sigma_{z} t} R_{\pi}=e^{+i \beta_{n} \sigma_{z} t}$ Eq.(4.92) in the lecture notes.
9. Show that $e^{+i a \sigma_{z}}\left(\sigma_{x} \cos \omega t+\sigma_{y} \sin \omega t\right) e^{-i a \sigma_{z}}=\sigma_{x}$ if $a=\frac{\omega t}{2}$ ie Eq.(4.84) in the lecture notes.

