
9.1. Derive the fluid equation starting from the acceleration and Friedmann equations.

The acceleration equation is

R̈ = −
4πG

3

(

ρ+
3p

c2

)

R,

while the Friedmann equation is

Ṙ2 =
8πG

3
ρR2 − kc2.

Taking the derivative of the Friedmann equation

2ṘR̈ =
8πG

3

(

ρ̇R2 + 2ρRṘ
)

.

Substituting for R̈ from the acceleration equation:

−
8πG

3

(

ρ+
3p

c2

)

RṘ =
8πG

3

(

ρ̇R2 + 2ρRṘ
)

,

hence

−
(

ρ+
3p

c2

)

RṘ = ρ̇R2 + 2ρRṘ.

Dividing through by R2,

ρ̇+ 3
Ṙ

R

(

ρ+
p

c2

)

= 0,

which is the fluid equation.

9.2. Integrate the Friedmann equation for a flat, matter-only universe (Einstein-de Sitter model)
to show that R ∝ t2/3.

Flat implies k = 0 while matter-only means that ρ ∝ R−3, so the Friedmann equation shows
that

Ṙ2 ∝ R−1.

Therefore
∫

R1/2 dR ∝ t,

which leads to R ∝ t2/3.
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Hence show that the age of such a universe is given by

t0 =
2

3
tH ,

where tH = H−1
0 is the “Hubble time” and H0 = H(t0) is Hubble’s constant at time t0.

Since R ∝ t2/3, we can write

R = R0

(

t

t0

)2/3

.

Since H = Ṙ/R, take the derivative

Ṙ =
2

3t
R0

(

t

t0

)2/3

,

giving

H =
2

3t
,

from which the result follows immediately.

9.3. Find the corresponding results to the previous question for a flat, radiation-only universe for
which ρR ∝ R−4. (This describes the early universe.)

For ρ ∝ R−3 and a flat Universe, the Friedmann equation gives

Ṙ2 ∝ R−2,

and carrying through the same calculation as before gives R ∝ t1/2. and

t =
1

2H
.

9.4. Use the fluid equation to show that a fluid for which p = −ρc2 does not change in density as
the universe expands. Comment on this result.

The fluid equation is

ρ̇+ 3
Ṙ

R

(

ρ+
p

c2

)

= 0.

Constant ρ implies ρ̇ = 0 so

ρ+
p

c2
= 0,

QED.
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9.5. Show that, in the Einstein-de Sitter universe, an object of fixed proper length seen at different
redshifts subtends a minimum angle at one particular redshift, and calculate the value of this
redshift.

The angle subtended by an object of length l is

α =
l

dA
,

where dA is the angular diameter distance given by

dA =
R0Sk(χ)

1 + z
.

The Einstein-de Sitter universe is flat (k = 0), so Sk(χ) = χ. The radial coordinate χ is given
by

χ =

∫ t0

te

c dt

R(t
.

For an Einstein-de Sitter universe

R(t) = R0

t2/3

t2/30

,

therefore

R0χ = ct2/30

∫ t0

te

t−2/3 dt,

= 3ct2/30

(

t1/30 − t1/3e

)

,

= 3ct0

(

1−
(

te
t0

)1/3
)

,

= 3ct0
(

1− (1 + z)−1/2
)

.

Combining all the results

α =
l(1 + z)

3ct0 (1− (1 + z)−1/2)
.

For large z, the denominator becomes constant while the numerator grows, and since for small
z (small distances) α must drop with z, there must be a minimum. Ignoring the constants and
taking the derivative

1

1− (1 + z)−1/2
−

(1 + z)(1 + z)−3/2

2 (1− (1 + z)−1/2)2
= 0.

Therefore
2
(

1− (1 + z)−1/2
)

= (1 + z)−1/2,

or

(1 + z)−1/2 =
2

3
,

which gives z = 5/4 = 1.25.
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Estimate the minimum angular diameter of a galaxy of diameter 20 kpc assuming that our
Universe follows the Einstein-de Sitter model with H0 = 72 km s−1 Mpc−1.

For z = 5/4,

α =
l(1 + 5/4)

3ct0(1− (1 + 5/4)−1/2)
=

9l

4ct0
.

From Q9.2, t0 = 2/3H0, so

α =
27lH0

8c
=

27× 2× 104 × 72× 10−6

8× 3× 105
= 3.3”.

9.6. The different components of the Universe (matter, radiation and the cosmological constant)
all have equations of state of the form p = wρc2.

(a) Write down the values of w for each component.

wM = 0, wR = 1/3, wΛ = −1.

(b) Use the acceleration equation to obtain a condition on w for a component if it is to
accelerate the rate of expansion of the Universe. (The density is always assumed to be
positive.)

Acceleration equation

R̈ = −
4πG

3

(

ρ+
3p

c2

)

R,

so for R̈ > 0, we must have

ρ+
3p

c2
< 0,

or

p < −
1

3
ρc2.

Thus w < −1/3 is the condition for a component which can accelerate the expansion.

9.7. The “surface brightness” of an object is the flux from it measured at Earth per unit solid angle
or equivalently square arcsecond on the sky. Show that the surface brightness of the same
object seen at different redshifts scales as (1 + z)−4.

The flux from an object scales as

f =
L

4πd2L
.
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If the object is a square of side l, its solid angle is

Ω = α2 =
l2

d2A
,

so the surface brightness

S =
f

Ω
=

L

4πl2
d2A
d2L

.

The final factor is
d2A
d2L

=
R2

0S
2
k(χ)(1 + z)−2

R2
0S

2
k(χ)(1 + z)2

= (1 + z)−4,

QED.

9.8. Calculate the radius of a sphere of density equal to the critical density that contains a mass
equal to that of the Sun, assuming that H0 = 72 km s−1 Mpc−1.

The critical density is given by

ρc =
3H2

0

8πG
= 9.7× 10−27 kgm−3.

The radius is thus given by

R =

(

3M"

4πρc

)1/3

= 3..66× 1018 m = 118 pc.

The galaxy is very over-dense compared to the average because in a sphere of this size there
are hundreds of thousands of stars.

9.9. (a) Show that for a universe governed by matter and the cosmological constant alone, Fried-
mann’s equation can be written as

H(z) = H0

(

ΩM(1 + z)3 + ΩΛ − (ΩM + ΩΛ − 1)(1 + z)2
)1/2

.

where H0 is the present day value of Hubble’s constant, H(z) is Hubble’s constant as
a function of redshift z and ΩM and ΩΛ are the present day ratios of the matter and
cosmological constant densities to the critical density ρC = 3H2

0/8πG.

Friedmann’s equation can be written

H2 =
8πG

3
ρ−

kc2

a2
.

The density can be written as
ρ = ρm + ρλ,
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where lower case letters represent time variable values as opposed to present day values
ρM , ρΛ. Since ρm ∝ R−3 while ρλ is constant, and because R ∝ (1 + z)−1, we can write

ρ = ρM(1 + z)3 + ρΛ = ρc
(

ΩM(1 + z)3 + ΩΛ

)

.

Hence, since ρc = 3H2
0/8πG, Friedmann’s equation becomes

H2 = H2
0

(

ΩM(1 + z)3 + ΩΛ

)

−
kc2

R2
.

Setting H = H0, R = R0 for the present day when z = 0, we have

kc2

R2
0

= H2
0 (ΩM + ΩΛ − 1),

thus
kc2

R2
=

kc2

R2
0

(

R0

R

)2

= H2
0 (ΩM + ΩΛ − 1)(1 + z)2.

Hence Friedmann’s equation becomes

H2 = H2
0

(

ΩM(1 + z)3 + ΩΛ − (ΩM + ΩΛ − 1)(1 + z)2
)

.

(b) Which term in the above relation represents curvature?

The term in (1 + z)2 is the curvature.

(c) When discussing distances, the following integral was needed to evaluate the comoving
radial coordinate χ:

χ =

∫ z

0

c dz

H(z)
.

Show from the relation of part (a) that this integral is a monotonically increasing function
of ΩΛ.

χ =

∫ z

0

c dt

H0 (ΩM(1 + z)3 + ΩΛ − (ΩM + ΩΛ − 1)(1 + z)2)1/2
.

The Λ-dependent part in the denominator is

ΩΛ(1− (1 + z)2) < 0,

for z > 0. Thus as the denominator decreases with Λ, and so the integral increases.

(d) What is the relation of the result of part (c) to the use of supernovae in cosmology?

Distant supernovae appear to dim faster than expected on a matter-only model and are
better fitted if there is a significant cosmological constant.
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9.10. (a) Starting from Einstein’s field equations in the contravariant form

Rαβ = −k

(

T αβ −
1

2
Tgαβ

)

+ Λgαβ,

and given that for the FRW metric

Rtt =
3

c4
R̈

R
,

derive the following form of the acceleration equation

R̈ = −
4πG

3

(

ρ+
3p

c2

)

R +
1

3
Λc2R.

where ρ does not include a cosmological constant component.

Assuming a perfect fluid

T αβ =
(

ρ+
p

c2

)

UαUβ − pgαβ.

In co-moving coordinates the fluid is stationary so U i = 0 and

gαβU
αUβ = gttU

tU t = c2.

In the FRW metric, coordinates (t, r, θ, φ), gtt = c2, so U t = 1 and gtt = 1/c2, so

T tt = ρ+
p

c2
−

p

c2
= ρ.

The trace T is defined by

T = gαβT
αβ =

(

ρ+
p

c2

)

gαβU
αUβ − pgαβg

αβ = ρc2 + p− 4p = ρc2 − 3p.

Therefore the field equations for the tt component can be written

3

c4
R̈

R
= −k

(

ρ−
1

2
(ρc2 − 3p)c−2

)

+ Λc−2,

and thus
R̈

R
= −

kc4

6

(

ρ+
3p

c2

)

++
1

3
Λc2.

Finally putting k = 8πG/c4, and multiplying through by (a) we get

R̈ = −
4πG

3

(

ρ+
3p

c2

)

R ++
1

3
Λc2R.
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(b) Show that this is equivalent to the equation derived in lectures if one adopts the view
that the cosmological constant is a fluid of density

ρΛ =
Λc2

8πG
,

and pressure pΛ = −ρΛc2.

Starting from

R̈ = −
4πG

3

(

ρ+
3p

c2

)

R,

set ρ→ ρ+ ρΛ and p → p+ pΛ, and substitute for ρΛ and pΛ using the expressions given,
lead to

R̈ = −
4πG

3

(

ρ+
3p

c2

)

R−
4πG

3

(

Λc2

8πG
− 3

Λc2

8πG

)

R,

= −
4πG

3

(

ρ+
3p

c2

)

R +
1

3
Λc2R.

I find the acceleration equation without Λ easier to remember, along with the relation
pΛ = −ρΛc2, although I tend not to remember the expression for ρΛ in terms of Λ.

9.11. There are no temperature gradients in a homogeneous Universe and so no heat transfer and
thus one can write

dU + p dV = 0,

where U is the internal energy of a volume V of the Universe and p is the pressure. Use this
and the relativistic mass-energy relation to prove the fluid equation:

ρ̇+ 3H(t)
(

ρ+
p

c2

)

= 0,

where ρ is the density, p is the pressure, H(t) is Hubble’s “constant” as a function of time and
the dot denotes a derivative with respect to cosmic time t.

The volume of any region of the Universe scales as V ∝ R3, and therefore setting V = kR3

where k is a constant (not the curvature constant) then

dV

V
= 3

dR

R
.

From E = mc2, U = V ρc2,
dU = ρc2 dV + V c2 dρ.

Hence dividing through by V ,

ρc2
dV

V
+ c2 dρ+ p

dV

V
= 0,
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and hence dividing through by c2

dρ+
(

ρ+
p

c2

) dV

V
= 0.

Finally using the relation for dV/V , dividing through by dt and recognising H = Ṙ/R the fluid
equation as given results.

9.12. “CODEX” is a proposed high-resolution spectrograph designed to measure the rate of change
of the redshift ż of distant objects as a way to measure past values of Hubble’s constant. This
is in principle visible as a change in the apparent recession velocity of the objects.

(a) Show that
ż = (1 + z)H0 −H(z),

where H0 is the present day value of Hubble’s constant and H(z) is the value of Hubble’s
constant at the time light from objects at redshift z was emitted.

The fundamental relation for redshift is

1 + z =
R(to)

R(te)
,

where to is the present age of the Universe = t, te is the age when the light from the quasar
was emitted. Thus

dto
dt

= 1,

and
dte
dt

=
1

1 + z
,

the second relation following from consideration of the same proof that leads to the redshift
relation.

Therefore

ż =
Ṙ(to)

R(te)

dto
dt

−
R(to)Ṙ(te)

R2(te)

dte
dt

,

=
R(to)

R(te)

(

Ṙ(to)

R(to)
−

Ṙ(te)

R(te)

1

1 + z

)

,

= (1 + z)H0 −H(z).

where H0 = Ṙ(t0)/R(t0) and H(z) = Ṙ(te)/R(te). QED.

(b) Hence calculate the rate of change of recession velocity of an object of redshift z = 1,
assuming an Einstein-de Sitter universe with R(t) ∝ t2/3.

[Present day value of Hubble’s constant H0 = 72 km s−1Mpc−1.]
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For the Einstein-de Sitter model

H(z) =
Ṙ(te)

R(te)
=

2

3te
.

Hence

H(z) =
2

3te
,

=
2

3t0

t0
te
,

= H0(1 + z)3/2,

since 1 + z = R(t0)/R(te) = (t0/te)2/3. The apparent change in velocity is given by

v̇ =
cλ̇0
λ0

=
cλeż

λ0
=

cż

1 + z
.

This gives v̇ = −0.9 cm s−1 yr−1, a very challenging number!

9.13. A ballistic projectile is fired from the origin in an Einstein-de Sitter universe (R(t) ∝ t2/3)
towards a galaxy nearby enough to have a non-relativistic recession speed due to universal
expansion.

(a) Show that

χ̈ = −2
Ṙ

R
χ̇,

where the dots denote derivatives with respect to the proper time τ of the projectile.

Ignoring angular terms, the Lagrangian is given by

L = c2ṫ2 −R2χ̇2.

The Euler-Lagrange equations then lead to the radial equation of motion:

d

dτ

(

−2R2χ̇
)

= 0,

so
R2χ̈ = −2RṘχ̇,

or

χ̈ = −2
Ṙ

R
χ̇,

where the derivatives are with respect to the proper time of the projectile.
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(b) ∗ Hence show that in order for the projectile to reach the galaxy it must be fired at a
speed greater than half the apparent recession speed of the galaxy as measured at the
time of firing.

From the Lagrangian
c2ṫ2 −R2χ̇2 = c2.

Now
dχ

dτ
=

dt

dτ

dχ

dt
= ṫ

dχ

dt
,

so

ṫ2
(

1−
R2χ̇2

c2

)

= 1.

The projectile’s proper distance d = Rχ increases at a rate

d(Rχ)

dt
= Ṙχ+Rχ̇,

=
Ṙ

R
Rχ+Rχ̇,

= Hd+Rχ̇,

thus v = Rχ̇ is the amount by which the projectile’s proper distance increases in excess of
the recession speed at the point the projectile has reached. Thus

ṫ =
dt

dτ
=

1
√

1− v2/c2
,

a familiar relation. Since the galaxy’s recession speed is % c, we can therefore assume
that ṫ = 1, or τ = t. Therefore with R ∝ t2/3, the equation of the previous part can be
written

dχ̇

dt
= −

4

3t
χ̇.

This leads to

ln χ̇ = −
4

3
ln t+ k,

where k is a constant, so

χ̇ =
vP
R0

(

t

t0

)−4/3

.

Integrating again

χ =
vP t

4/3
0

R0

[

−3t−1/3
]∞

t0
,

=
3vP t0
R0

,

=
2vP
H0R0

.

Thus the projectile reaches a proper distance (as measured at the time it is fired) d =
2vP/H0. At the start, a point at this distance recedes from the origin at rate H0d = 2vP .
Thus as long as vP > vG/2, the projectile will catch up with the galaxy.
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10.1. The generalised coordinates of GR can be confusing; the TT gauge of gravitational waves is a
good example of this. This question illustrates this. A weak gravitational field is described by
gαβ = ηαβ + hαβ where |hαβ| % 1.

(a) Use the Levi-Civita equation (handout 3) to show that to first order the connection can
be written

Γα
βγ =

1

2
ηασ (hβσ,γ + hσγ,β − hβγ,σ) .

This is straightforward. The Levi-Civita equation is

Γα
βγ =

1

2
gασ (gσγ,β + gβσ,γ − gβγ,σ) ,

and retaining only first order terms the result follows immediately (derivatives of the SR
metric η are zero).

(b) In the TT gauge, hα0 = h0α = 0. Use the general equations of motion

ẍα + Γα
βγẋ

βẋγ = 0,

and the result of part (a) to show that freely-floating particles which are initially stationary
(ẋi = 0, i = 1, 2, 3) will remain stationary in the presence of gravitational waves.

With ẋi = 0, the equations of motion become

ẍα = −Γα
00ẋ

0ẋ0.

However from part (a),

Γα
00 =

1

2
ηασ (h0σ,0 + hσ0,0 − h00,σ) = 0,

because of the TT gauge conditions. Therefore

ẍα = 0,

and so the particles remain stationary in the TT coordinates.

(c) The previous result is misleading: the particles are stationary in coordinates, but the
physically measurable distance between particles is variable, i.e. the TT coordinates
track the particles. To see this show, from the form of hαβ derived in lectures that the
distance l from the origin of a free particle at TT coordinates (x, y) as a gravitational
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wave of angular frequency Ω passes in the z direction is given by l2 = xiAijxj, where i
and j are only summed over x and y and the 2x2 matrix A is given by

A =

(

1− a cosΩt −b cosΩt
−b cosΩt 1 + a cosΩt

)

.

(In general the time-dependent terms could also include phase shifts.)

Setting dt = 0, and l2 = −s2, the distance measured from the origin is given by

l2 = −gijx
ixj.

where i and j only apply to x and y. Since gαβ = ηαβ + hαβ, and remembering that
ηxx = ηyy = −1, then

Aij = −gij = δij − hij.

Given the form of hij from lectures (an remembering that it oscillates), the results follow.

(d) Use the relation of part (c) to justify the standard elliptical distortion patterns of gravi-
tational waves when they pass through a set of particles initially arranged in a circle.

l2 = xiAijxj is what is known as a quadratic form, and as is well-known from matric
theory can be expressed as l2 =

∑2
i=1 λiu

2
i where λi are the eigenvalues of A and ui are

the components of (x, y) resolved along the corresponding eigenvectors. The eigenvectors
are perpendicular to each other since A is symmetric. If λ1 &= λ2, a set of points forming
a circle are evidently deformed into an ellipse. Consider first the case when b = 0, so that

A =

(

1− a cosΩt 0
0 1 + a cosΩt

)

.

Then the eigenvectors are clearly (1, 0) and (0, 1), so this corresponds to the polarisation
where the stretching and squeezing occur along the x and y axes. For a = 0 we have

A =

(

1 b cosΩt
b cosΩt 1

)

.

which has eigenvectors (1, 1) and (1,−1) so that the ellipses are oriented at 45◦ degrees
to the x and y axes. These two polarisations are independent and need not be in phase
with each other.

10.2. Using the formula from lectures for the amplitude of gravitational waves produced by a variable
mass quadrupole at distance r

h̄ij = −
2G

c4r

d2I ij

dt2
,

where

I ij =

∫

ρxixj dV,
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discuss the feasibility of setting up a calibration source for the current laser interferometers
consisting of two equal masses rotated around a vertical axis. Assume a sensitivity of h ∼ 10−21

at frequencies ∼ 100Hz.

Assuming that each mass m is a distance a from the axis then their x coordinates are given by

x = ±a cosωt.

Assuming point masses, the quadrupole integral reduces to a sum over each mass:

Ixx = m(a cosωt)2 +m(a cosωt)2 = ma2(1 + cos 2ωt).

Differentiating twice,
Ïxx = −4ma2ω2 cos 2ωt.

Therefore the h̄xx component oscillates with amplitude

8Gma2ω2

c4r
.

For a given target h this defines the parameters required for the calibration source. The in-
terferometers are several kilometres in length so let’s take r = 100 km to make sure the waves
produced by the calibration source are roughly planar. Therefore

ma2ω2 =
c4hr

8G
∼ 1026 J.

This corresponds to ∼ 1016 J per person on the planet, equivalent to 300MW per person for a
year. This is not going to happen!

NB Strictly speaking, one should impose the condition that the solution is traceless by correcting
by −(Ixx + Iyy)/2, but this makes no qualitative difference to the final conclusion.

10.3. Two particles of equal mass M separated by a moving in circular orbits around their centre of
mass lose energy due to the emission of gravitational waves at a rate

dE

dt
= −

64G4M5

5c5a5
.

The energy comes from the shrinkage of the orbit of the two particles.

(a) Using Newtonian mechanics show that the rate of change of the orbital separation is given
by

ȧ = −
128G3M3

5c5a3
.

By the virial theorem or by summing potential and kinetic energies, the total energy of
the system is

E = −
GM2

2a
.

100



Taking its derivative
dE

dt
=

GM2

2a2
ȧ.

The formula for ȧ then follows directly.

(b) Hence obtain an expression for the time taken for the two particles to spiral together.

Integrating
∫ 0

a

a3 da = −
128G3M3

5c5

∫ t

0

dt,

and thus

t =
5c5a4

512G3M3
.

(c) Calculate the time for two neutron stars, each with M = 1.4M" to merge starting from
an orbital period of 2 hr. [Assume circular orbits throughout.]

Kepler 3 gives

Ω2 =
4π

P 2
=

G(2M)

a3
,

which gives a = 7.886 × 108 m. This then gives t = 4.4 × 107 yr, relatively short-lived
by astronomical standards, so gravitational waves act to remove short period binaries, or
force them to evolve.

(d) The LIGO interferometers are expected to pick up the final in-spiral of pairs of neutron
stars when they have reached a gravitational wave frequency of about 50Hz; seismic noise
makes detection difficult at lower frequencies.

Estimate how long a neutron star merger event will last for LIGO.

The time to merger scales as a4 while from Kepler’s third law, a ∝ P 2/3, thus t ∝ P 8/3.
50Hz in gravitational waves corresponds to an orbital frequency of 25Hz, so P = 0.04 s.
Thus the merger time compared to the previous part is

(4.4× 107 yr)×
(

0.04

7200

)8/3

= 13.4 s.

Would a pair of merging 10M" black-holes be detectable over a longer or shorter interval
of time?

The merger time scales as

t ∝
a4

M3
,

101



while a ∝ M1/3P 2/3, thus
t ∝ M−5/3P 8/3.

Assuming that the black-holes are also first detected at 50Hz, then they will be seen for
a shorter interval of time. In reality the frequency at which they are seen will depend
upon their distance, but since the seismic noise rises steeply, this is probably a reasonable
approximation.

(e) Qualitatively describe the nature of the gravitational wave signal that will characterise
the first part of such mergers, while the two stars can be treated as point masses.

The signal’s frequency will get higher and higher with time, and since

h ∝ a2Ω2,

while Ω2 ∝ a−3, then h ∝ a−1, and the strength of the signal will increase with time too
as the separation decreases. This is known as the “chirp” signal.

10.4. Use the quadrupole formula to show that a spherically symmetric mass distribution produces
no gravitational waves.

Without loss of generality we can assume that we are located on the z-axis, and we can take the
origin to be the centre of symmetry. We are interested in integrals of the form Ixx =

∫

ρx2 dV ,
Iyy =

∫

ρy2 dV and Ixy = Iyx =
∫

ρxy dV . The last integral is clearly zero by spherical
symmetry, while the other two must be equal, giving a wave tensor of the form









0 0 0 0
0 a 0 0
0 0 a 0
0 0 0 0









,

but in the TT gauge, this must be traceless, so 2a = 0, and so there is no wave produced.
Sadly, this means that rather little of the tremendous energy of supernova explosions need go
into gravitational waves.

10.5. In lectures (see also problem sheet 5) it was stated that the linearised field equations reduce
to

h,αβ +!hαβ − ηγδ (hαγ,δβ + hδβ,αγ)− (!h− hσρ
,σρ) ηαβ = 2kTαβ,

where ! = ηαβ∂α∂β.

Show by applying the Lorenz gauge condition:

hαβ
,β =

1

2
ηαβh,β,
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that the field equations reduce to

!hαβ −
1

2
ηαβ!h = 2kTαβ.

The first part of the third term in the linearised FEs can be written as

ηγδhαγ,δβ = ηαγh
γδ

,δβ =
1

2
ηαγη

γδh,δβ =
1

2
h,αβ,

where the third term makes use of the gauge condition. Similarly:

ηγδhδβ,αγ =
1

2
h,βα.

Given the commutativity of partial derivatives, the first and third term of the FEs cancel leaving:

!hαβ − (!h− hσρ
,σρ) ηαβ = 2kTαβ.

Again using the gauge condition, the second term in brackets can be written

hσρ
,σρ =

1

2
ησρh,σρ =

1

2
ησρ∂σ∂ρh =

1

2
!h.

The final result follows directly.

10.6. This question concerns the equivalent in GR of magnetic fields, something that does not come
up in Newtonian gravity.

(a) Consider a stress-energy tensor T αβ that is time-independent (T αβ
,0 = 0, often called

“stationary” although there can still be motion, e.g. rotation of a sphere).

In this case, justify why the general solution of the linearised field equations

!h̄αβ = 2kT αβ,

can be written as

h̄αβ(x) =
k

2π

∫

T αβ(y)

|x− y|
d3y,

where x is the 3-vector position at which we want the value of h̄αβ, and y defines the
volume element while k = −8πG/c4.

Since the stress-energy tensor is invariant, the wave operator ! reduces simply to −∇2,
and the linearised field equations are

∇2h̄αβ = −2kT αβ,

directly analogous to
∇2φ = 4πGρ,
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which has solution

φ(x) = −G

∫

ρ(y)

|x− y|
d3y.

Adjusting the constant outside the integral, and replacing ρ by T αβ and φ by h̄αβ leads to
the solution given.

(b) For non-relativistic sources, the energy-momentum tensor components are easily seen to
be given by

T 00 = ρc2, T 0i = ρcui, T ij = ρuiuj,

where ui are the components of the 3-velocity. Show from these that to first order in the
velocities,

h̄00 =
4φ

c2
, h̄0i =

Ai

c
, h̄ij = 0,

where

φ(x) = −G

∫

ρ(y)

|x− y|
d3y,

Ai(x) = −
4G

c2

∫

ρ(y)ui(y)

|x− y|
d3y.

Putting k = −8πG/c4 then

h̄αβ(x) = −
4G

c4

∫

T αβ(y)

|x− y|
d3y.

This immediately leads to the expressions given, with the component T ij zero to first order
in the velocities.

(c) Hence show that

h00 = h11 = h22 = h33 =
2φ

c2
, h0i =

Ai

c
.

The “trace reverse” goes both ways, i.e.

hαβ = h̄αβ −
1

2
h̄ηαβ,

with
h̄ = hαβηαβ.

Given the components of h̄αβ, h̄ = 4φ
c2 , so

h00 =
4φ

c2
−

1

2

4φ

c2
η00 =

2φ

c2
,

since η00 = 1. Also since η00v = 1 and η is diagonal, h00 = h00 = 2φ/c2. The other
components follow in the same manner.
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(d) Finally, show that the corresponding approximate line element can be written as

ds2 = c2
(

1 +
2φ

c2

)

dt2 + 2Ai dt dx
i −

(

1−
2φ

c2

)

dxidxi,

with implied summation over the i-index in the final term.

This follows directly from gαβ = ηαβ + hαβ and the values of hαβ from the previous part.

The term in Ai shows that in GR, motion of the gravitating mass can affect the line element
and hence the orbital motion of nearby test particles. This crops up in the Kerr metric for
rotating black-holes which unfortunately we do not have the time to cover. φ and Ai are
analogous to the scalar and vector potentials of electromagnetism.
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