
7.1. A particle is dropped from rest at a radius r = r0 in Schwarzschild coordinates from a black-hole
of mass M .

(a) Show that at radius r
dr

dτ
= −

√

2GM

r
−

2GM

r0
,

where τ is the particle’s proper time.

From the lectures, the “energy equation” for the Schwarzschild metric is

ṙ2 +
h2

r2

(

1−
2GM

c2r

)

−
2GM

r
= c2(k2 − 1).

Where h = r2φ̇ is a constant as is k. If dropped from rest, h = 0, and since ṙ = 0 at
r = r0, we have

−
2GM

r0
= c2(k2 − 1).

Therefore the energy equation reduces to

ṙ2 −
2GM

r
= −

2GM

r0
,

or

ṙ2 =
2GM

r
−

2GM

r0
,

and the result follows, remembering that the particle clearly moves towards smaller r.

(b) Hence show that the total proper time for the particle to reach the singularity at r = 0
is given by

τ = π

√

r30
8GM

.

The proper time is given by

τ =

∫ 0

r0

−
dr

√

2GM/r − 2GM/r0
=

∫ r0

0

dr
√

2GM/r − 2GM/r0
.

Thus

τ =
1√
2GM

∫ r0

0

√

r0r

r0 − r
dr.

Making the substitution r = r0 sin
2 θ, the integral becomes

∫ r0

0

√

r0r

r0 − r
dr = r3/20

∫ π/2

0

2 sin2 θ dθ = r3/20

∫ π/2

0

(1− cos 2θ) dθ,

= r3/20

[

θ −
sin 2θ

2

]π/2

0

=
π

2
r3/20 .
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Hence

τ = π

√

r30
8GM

.

(c) Calculate the proper time taken for a particle dropped from the event horizon of the
black-hole at the centre of our Galaxy (M = 4.5× 106 M!) to reach the singularity.

Put r0 = RS = 2GM/c2, then

τ = π

√

8(GM)3

8GMc6
=

πGM

c3
=

π × 6.67× 10−11 × 4.5× 106 × 2× 1030

(3× 108)3
= 69.9 sec .

7.2. An observer stationary at radius r > RS (Schwarzschild coordinates) measures the speed of
the particle of Q7.1 as it passes by having started at r0 > r. Show the following:

(a) The proper “ruler” distance dl measured by the observer corresponding to a change in
radial coordinate dr is

dl =
dr

(1− 2µ/r)1/2
,

where µ = GM/c2.

Suppressing the angular coordinates, the Schwarzschild metric is

ds2 = c2
(

1−
2µ

r

)

dt2 −
(

1−
2µ

r

)−1

dr2.

Proper length is given by dl2 = −ds2 for dt = 0, thus

dl2 =
dr2

1− 2µ/r
,

and the result follows.

(b) The derivative of coordinate time t with respect to the particle’s proper time τp is given
by

(

dt

dτp

)2

= ṫ2 =

(

1−
2µ

r

)−1

+

(

1−
2µ

r

)−2 ( ṙ

c

)2

.

The 4-velocity norm implies that

gttṫ
2 + grrṙ

2 = c2,

with gtt = c2(1− 2µ/r) and grr = −(1− 2µ/r)−1. Therefore

c2(1− 2µ/r)ṫ2 − (1− 2µ/r)−1ṙ2 = c2.

Given that ṫ = dt/dτp, the result again follows.
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(c) The derivative of the observer’s proper time τo with respect to coordinate time t is given
by

dτo
dt

=

(

1−
2µ

r

)1/2

.

This follows directly from c2 dτ 2o = ds2 and dr = 0 for the observer.

(d) Thus, combining the above results, show that if the observer is very close to the event
horizon, the particle will pass by at the speed of light, independent of its initial radius.

The observer measures a speed

v =
dl

dτo
=

dl

dr

dr

dτp

dτp
dt

dt

dτo
,

=
(dl/dr)(dr/dτp)

(dt/dτp)(dτo/dt)
,

=
(1− 2µ/r)−1/2ṙ

(dt/dτp)(1− 2µ/r)1/2
,

=
(1− 2µ/r)−1ṙ

(dt/dτp)
,

The equation for dt/dτp is dominated by the second term as r → 2µ at the event horizon,
and so

dt

dτp
→

(

1−
2µ

r

)−1 ṙ

c
,

and hence v → c.

7.3. A particle is set in an orbit around a black-hole of mass M starting from radius r0 % µ =
GM/c2 with a purely angular motion at speed v = rφ̇ = h/r. The speed v is much less than
the circular orbital speed at r0 so that as it orbits the particle passes close to the black-hole.

(a) Using the energy equation from lectures, show that |k2 − 1| & 1.

From

ṙ2 +
h2

r2

(

1−
2µ

r

)

−
2µc2

r
= c2(k2 − 1),

setting ṙ = 0 and h = r0v, and using r0 % µ, we have

c2(k2 − 1) ≈ v2 −
2µc2

r0
.

The circular orbital speed far from the black-hole is given by the Newtonian equation

v2c =
GM

r0
=

µc2

r0
.
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Since v & vC, we can write

c2(k2 − 1) ≈ −
2µc2

r0
,

so

|k2 − 1| ≈
2µ

r0
& 1.

(b) Hence, by considering the effective potential, show that the particle will be captured by
the black-hole if

v < 4

(

µ

r0

)

c.

For usual values of h, as one proceeds from large to small radii, the effective potential

Veff =
h2

2r2

(

1−
2µ

r

)

−
µc2

r
,

goes through a minimum and then a maximum, before finally plunging down towards r = 0
as the 1/r3 term dominates. Therefore as long as the total energy is enough to exceed
the inner maximum, the particle will be captured. From the first part, this is the case if
the inner maximum is less than ≈ 0, since the total energy of the particle is very small.
Veff = 0 implies that

h2

2r2

(

1−
2µ

r

)

−
µc2

r
= 0,

and so multiplying by −r3 gives the quadratic

2µc2r2 − h2r + 2µh2 = 0.

This will fail to reach 0 if “b2 < 4ac” or

h4 < 16µ2c2h2,

or
h < 4µc.

The result follows immediately.

(c) Calculate the maximum value of v for M = 1M!, and r0 = 1AU.

For M = 1M!, µ ≈ 1.5 km, while 1AU ≈ 1.5× 108 km, so v < 4× 10−8c = 12m s−1. If
one compares with Earth’s orbital speed of ≈ 30 km s−1, it can be seen that it is not that
easy to give an object a low enough angular momentum to fall into a black-hole, which is
why accretion discs are astrophysically important.
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7.4. Show that the radius of the inner maximum of the Schwarzschild potential – provided that
there is such a maximum – is minimised as h → ∞.

The Schwarzschild potential is given by

V (r) =
h2

2r2

(

1−
2µ

r

)

−
µc2

r
.

Extrema are defined by V ′(r) = 0 or

V ′(r) = −
h2

r3
+

3µh2

r4
+

µc2

r2
= 0,

which gives
µc2r2 − h2r + 3µh2 = 0,

so the maximum is at radius

r =
1

2µc2

[

h2 −
(

h4 − 12µ2c2h2
)1/2

]

.

Setting x = h2 and taking the derivative 2µc2dr/dx gives

2µc2
dr

dx
= 1−

x− 6µc2

(x2 − 12µc2x)1/2
,

= 1−
x− 6µc2

((x− 6µc2)2 − 36µ2c4)1/2
.

In the final form, so long as x = h2 > 12µc2 to ensure the existence of the inner maximum, the
numerator in the fraction is positive while the denominator is positive and manifestly smaller
than the numerator. Therefore

2µc2
dr

dx
< 0.

Hence r is minimised as h → ∞.

Hence show that the closest one can pass by a black-hole of mass M without being captured
is given by r = 3GM/c2.

The minimum radius that the inner maximum reaches represents the closest one can reach
without being captured because any particle that manages to get over the inner maximum is
doomed. From the expression for r

r =
h2

2µc2

[

1−
(

1−
12µ2c2

h2

)1/2
]

.

Letting h → ∞, and expanding the last term

r →
h2

2µc2

[

1− 1 +
6µ2c2

h2

]

= 3µ =
3GM

c2
,

QED.
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7.5. If the Sun was replaced by a black-hole of the same mass, how accurately would a laser from
Earth have to be directed to ensure that its beam was captured? [Ignore Earth’s motion.]

The energy equation for photons is

ṙ2 +
h2

r2

(

1−
2µ

r

)

= c2k2.

The effective potential has a single maximum which is easily shown to be at r = 3µ. Assuming
that the laser beam is directed at an angle α from the direct line to the black-hole, we can say
that

ṙ = −β cosα,

rφ̇ = β sinα.

Here we ignore small correction terms from the metric since Earth’s orbital radius r % µ and
β is a constant depending upon the affine parameter used to define the photon’s path. Therefore

h = r2φ̇ = βr sinα,

and so

c2k2 = β2 cos2 α +
β2r2 sin2 α

r2

(

1−
2µ

r

)

= β2

(

1−
2µ

r
sin2 α

)

.

The photons will be captured provided that this exceeds the maximum at r = 3µ which is given
by

β2r2 sin2 α

(3µ)2

(

1−
2µ

3µ

)

.

Therefore the photons are captured if

1−
2µ

r
sin2 α >

r2 sin2 α

27µ2
,

which gives

sinα <

(

27µ2r

r3 − 54µ3

)1/2

.

For r % µ as here, this reduces to

α < 3
√
3
GM

c2r
,

measured in radians. This works out to be 0.011 arcseconds. Note that r sinα is the impact
parameter, and therefore 3

√
3GM/c2 is the effective cross-sectional radius of a black-hole for

intercepting photons. One could for example calculate the rate at which black-holes sweep up
photons from the microwave background from this.

7.6. A satellite of mass m orbits an object of mass M at constant distance r.
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(a) Writing as usual µ = GM/c2, show that the energy constant k is given by

k2 = 1−
(

r − 4µ

r − 3µ

)

µ

r
.

We have

c2(k2 − 1) = ṙ2 +
h2

r2

(

1−
2µ

r

)

−
2µc2

r
.

An orbit of constant radius implies that ṙ = 0 and from lectures that

h2 =
µc2r2

r − 3µ
.

(Follows from dV/dr = 0.) Therefore

c2(k2 − 1) =
µc2

r − 3µ

(

1−
2µ

r

)

−
2µc2

r
,

=
µc2

r(r − 3µ)
(r − 2µ− 2(r − 3µ)) ,

=
µc2

r(r − 3µ)
(−r + 4µ),

from which the result follows straightforwardly.

(b) Hence show that at r % µ the energy of the particle is given by

E ≈ mc2 −
GMm

2r
.

For r % µ

k2 ≈ 1−
µ

r
,

and so
k ≈ 1−

µ

2r
.

Therefore

E = kmc2 = mc2 −
µc2m

2r
= mc2 −

GMm

2r
.

Give a physical interpretation for this result.

In Newtonian terms, the final term is the sum of the potential and kinetic energies. The
potential energy has twice the magnitude of the kinetic energy and so the overall result
= −GMm/2r. The first term is the rest mass of the particle.
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(c) Obtain an expression for the ratio α of the rate at which time passes for the particle
compared to the rate it passes for an observer stationary at infinity.

The constant k is defined by

k =

(

1−
2µ

r

)

dt

dτ
,

where τ is the proper time experienced by the orbiting particle and t the coordinate time
applies to the stationary observer at infinity. Thus

α =
dτ

dt
=

1

k

(

1−
2µ

r

)

,

and therefore substituting for k and applying a little algebra,

α =

(

r − 3µ

r

)1/2

.

Calculate α for the last stable circular orbit.

In this case r = 6µ, so

α =
1√
2
= 0.707,

so an astronaut’s clock would run at 70% of an external observer, if the astronaut was in
the last stable orbit.

One can “time travel” in this manner more effectively if one is prepared to orbit in unstable
circular orbits. These run all the way down to r = 3µ and so arbitrarily low values of α
are possible. However, for very small α, the cost in terms of energy to get into such an
orbit would be prohibitive, and one can imagine sleepless nights with the orbit control of
the spacecraft on “autopilot”.

Show that for r % µ

α ≈ 1−
3GM

2c2r
.

This follows directly from the previous answer since

α =

(

r − 3µ

r

)1/2

=

(

1−
3µ

r

)1/2

≈ 1−
3GM

2c2r
,

if r % µ.

Give an interpretation of this result in terms of gravitational and special-relativistic time
dilation factors.
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We expect a 1 + φ/c2 = 1 − GM/c2r factor from gravitational time dilation and a
(1 − v2/c2)1/2 ≈ 1 − v2/2c2 factor from the usual SR time dilation. For a Newtonian
circular orbit, v2 = GM/r, and hence the 3/2 factor here which can be thought of as 2/3
gravitational time dilation, 1/3 SR time dilation.

(d) The GPS satellites provide a famous practical example of GR. The GPS satellites orbit
at a radius of 26,600 km around Earth which has mass 5.98× 1024 kg and radius 6370 km.

Calculate the rate at which the GPS satellites gain or lose compared to clocks on Earth,
and hence, given that they provide positional information by timing, calculate the posi-
tional error that could result after one day of ignoring relativistic effects.

A subtlety here is that we need to account for the relativistic effects on Earth as well as the
satellite. The difference between the rates at which clocks run on Earth cf the satellites
(scaled by an observer at infinity) = αE−αGPS, which, ignoring Earth’s rotation, evaluates
to

=
3× 6.67× 10−11 × 5.98× 1024

2× (3.00× 108)2 × 2.66× 107
−
6.67× 10−11 × 5.98× 1024

(3.00× 108)2 × 6.37× 106
= 2.5×10−10 = −4.46×10−10.

The negative sign indicates that the Earth clocks runs slower than the satellites. In one
day (86400 sec) this amounts to a drift of 38.5 microseconds, the equivalent of 11 km
positional error!

7.7. An alternative (but deeply unattractive) explanation for the 43”/century “anomalous” preces-
sion of the perihelion of Mercury is that Newton’s law of gravity should be modified from 1/r2

to 1/r2+ε where ε is small but non-zero.

Calculate the value of ε that matches Mercury’s precession rate.

This is a chance to try out a slightly different version of the perturbation calculation used to
derive the rate of precession in the Schwarzschild case. If Newton’s law of gravity is modified
as suggested then the potential will become something like

φ = −
GM

r1+ε
,

and the total energy per unit mass will be

E

m

1

2

(

ṙ2 + (rφ̇)2
)

−
GM

r1+ε
.

Assuming it is still a central force then r2φ̇ = h and so the effective potential becomes

V (r) =
h2

2r2
−

GM

r1+ε
.

For circular orbits V ′(r) = 0 so

−
h2

r3
+ (1 + ε)

GM

r2+ε
= 0.
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(Note there is ambiguity about whether the force or the potential should have a 1 + ε factor,
but it is irrelevant for the final result.) Thus

h2 = (1 + ε)GMr1−ε. (12)

We will use this later to substitute for h, but for now we note that it implies that

φ̇2 =
h2

r4
= (1 + ε)

GM

r3+ε
.

To derive the precession rate we considered small oscillations in r which occur at

ω2
r = V ′′(r),

where V ′′(r) is the second derivative evaluated at the minimum point just calculated. This is
given by

V ′′(r) =
3h2

r4
− (1 + ε)(2 + ε)

GM

r3+ε
.

Substituting for h2

V ′′(r) =
3(1 + ε)GM

r3+ε
− (1 + ε)(2 + ε)

GM

r3+ε
= (1− 2ε2)

GM

r3+ε
.

Therefore the precession per orbit is given by

∆φ = 2π

(

φ̇

ωr
− 1

)

= 2π

(

1 + ε

1− 2ε2

)1/2

− 1) ≈ πε,

since ε is clearly small. For Mercury with P = 0.24 yr and an angle of 43”/century,

∆φ = 5.00× 10−7 rads,

and so
ε = 1.59× 10−7,

i.e. we should speak of “Newton’s 1/r2.000000159 law”. Luckily GR provides a more convincing
explanation.

7.8. Both special relativity and general relativity provide the opportunity to time-travel into the
future. However, to do so with SR alone requires an enormous expenditure of energy in order
to accelerate near to the speed of light and then to slow down.

(a) By considering the form of the effective potential of massive particles, show that it is
possible to use orbital motion around a Schwarzschild black-hole to time-travel “on the
cheap” with little or no expenditure of energy.

The effective potential of a Schwarzschild black-hole has an inner maximum of height that
depends upon the specific angular momentum. Starting from far from the black-hole with
slow speed k ≈ 1 and the “total energy” term c2(k2 − 1) & c2. Thus if h is chosen so
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that the inner maximum potential is near zero, one can get into a close orbit around the
black-hole with relatively little effort. The time factor in this orbit is governed by ṫ given
by

(

1−
2µ

r

)

ṫ = k.

Since k = 1, ṫ > 1 and so the proper time experienced in orbit advances more slowly than
the coordinate time experienced far from the black-hole.

(b) Starting from a large radius, what value of h in units of µc would allow the most effective
time-travel for minimal expenditure of energy.

This is the critical case of Q7.3b with h = 4µc.

(c) By what factor could one step forward into the future by these means?

The maximum of the Schwarzschild potential occurs when V ′(r) = 0, which from lectures
occurs at

rC =
h2 ±

√

h4 − 12h2µ2c2

2µc2
.

Setting h = 4µc and taking the negative root for the inner maximum,

rC =
16µ2c2 −

√

256µ4c4 − 192µ2c4

2µc2
= 4µ.

Therefore from part (a), since k = 1,

ṫ =
dt

dτ
=

k

1− 2µ/r
= 2,

not a huge step forward, but for free, if you have a friendly neighbourhood black-hole.

7.9. ∗ The equation of geodesic deviation was quoted in lectures as

D2wα

Dλ2
+Rα

γβδ ẋ
γẋδwβ = 0,

where *W is a vector separating two particles in free-fall. The first terms is the total derivative
which allows for arbitrary coordinates. If we can stick to Cartesians, it reduces to d2wα/dλ2.

Consider two massive particles falling vertically down along a radial line towards the North
pole on Earth, separated vertically by a distance s. Assuming non-relativistic motion, and
defining the z-axis to be vertical show that

ds2

dt2
= −c2Rz

tzt s,
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i.e. the two particles accelerate relative to each other by an amount proportional to their
separation, providing a way to measure one of the Riemann tensor components.

This question is about tidal forces, and quantifies the idea of a “small” lab in free-fall being
governed by SR. Over a finite region, the effects of gravity do not disaappear but remain as
tides. Here, since motion is non relativistic, only the time component of the four-velocity terms
(ẋγ, ẋδ) remains, = c. This gives the c2. We use proper time instead of the arbitrary affine
parameter λ and Cartesian coordinates so that the geodesic equation can be written

d2wα

dτ 2
+ c2Rα

tβt w
β = 0.

Comparing the position of the two particles at the same time, wt = 0, and only the wz = s
component remains given the definition of the z-axis, so the relation further reduces to

d2s

dτ 2
+ c2Rz

tzt s = 0.

Finally, since motion is non-relativisitic, then τ ≈ t, and the final result is obtained.

It has to be said that Newtonian gravity is much easier than GR when it comes to tides, but of
course cannot cope with strong fields and relativisitic speeds.

7.10. Calculate the minimum angle above the surface of a neutron star of mass M = 2.5M!, and
radius R = 8km at which one would have to direct a laser beam in order for the light to escape
the star.

[Warning: you may be tempted to write down that

tanα =
1

r

dr

dφ
,

where α is the angle to the surface, but this is not quite right: think in terms of the proper
distance moved given small changes in coordinates r and φ.]

If the angle to the surface is α then tanα is the ratio of the proper distance in the radial direction
to the proper distance in the azimuthal direction. The latter is simply r dφ (for θ = π/2) from
the Schwarzschild metric, but the former is (1− 2µ/r)−1/2 dr and so

(

1−
2µ

r

)−1/2

ṙ = tan(α)rφ̇ = tan(α)
h

r
.

Using this in the photon “energy equation” to substitute for ṙ:
(

1−
2µ

r

)

tan2(α)
h2

r2
+

h2

r2

(

1−
2µ

r

)

= c2k2,

which leads to

c2k2 =
h2

r2

(

1−
2µ

r

)

1

cos2 α
.
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For the photon to escape, this must exceed the peak of (twice) the effective potential at r = 3µ
which has value

2V (r = 3µ) =
h2

27µ2
.

Therefore we require
h2

r2

(

1−
2µ

r

)

1

cos2 α
>

h2

27µ2
,

or

cosα < 3
√
3
µ

r

(

1−
2µ

r

)1/2

.

For the numbers given (hypothetical since neutron stars are generally less massive than this),
taking GM!/c2 = 1.5 km

cosα < 3
√
3
3.0

8.0

(

1−
6.0

8.0

)

= 0.9742,

so α > 13◦.

7.11. ∗ Consider orbits of particle subject to a central attractive force of the form F ∝ rα.

(a) Derive a condition on α such that a whole number N of radial “epicycles” are completed
within one orbit. (The orbit is then closed.)

The potential is derived from
∫

F dr so will take the form krα+1 (except in the case
α = −1), so including the “centrifugal barrier” the effective potential will be

V (r) =
h2

2r2
+ krα+1.

The condition for circular orbits V ′(r) = 0 gives

V ′(r) = −
h2

r3
+ k(α + 1)rα = 0,

so that
h2 = k(α + 1)rα+3.

Therefore the epicyclic frequency is given by

ω2
r = V ′′(r) =

3h2

r4
+ kα(α + 1)rα−1.

Substituting for h2,

ω2
r = 3(α + 1)krα−1 + α(α + 1)krα−1,

= (α + 1)(α + 3)krα−1.

This compares with the angular frequency ωφ = φ̇ = h/r2 or

ω2
φ = (α + 1)krα−1.
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The condition of the question is satisfied if

ωr = Nωφ,

where n is a positive integer, i.e.

(α + 1)(α + 3) = N2(α + 1).

The case α = −1 was excluded at the start and we are left with

α = N2 − 3.

(b) Comment on the values of α for N = 1 and N = 2.

N = 1 gives α = −2, i.e. the 1/r2 law of Newtonian gravity; N = 2 gives α = 1, a
linear force law leading to SHM and orbits which take the form of ellipses centred upon
the centre of attraction.

(c) For what values of α are circular orbits stable?

Given the equation for h2, we must have k(α + 1) > 0. Circular orbits are stable as long
as ω2

r > 0, which implies that α > −3. The 1/r3 term in the Schwarzschild effective
potential can be regarded as an α = −4 force-law term; when this dominates, it leads to
instability.

(d) What is the precession angle per orbit for α = −1 and is the precession in this case
prograde or retrograde?

In this case the potential takes the form k ln r and the effective potential is

V (r) =
h2

2r2
+ k ln r.

The condition for circular orbits V ′(r) = 0 gives

V ′(r) = −
h2

r3
+

k

r
= 0,

so
h2 = kr2.

The epicyclic frequency is thus

ω2
r = V ′′(r) =

3h2

r4
−

k

r2
=

2k

r2
.

This compares to an angular frequency of

ω2
φ =

h2

r4
=

1

2
ω2
r .
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Therefore the precession angle per orbit is

2π

(

ωφ

ωr
− 1

)

= 2π

(

1√
2
− 1

)

= −1.84 rads / orbit.

This is retrograde precession.

7.12. Consider the photon energy equation for r < 2µ. Show that in this case ṙ can never be zero
and so photons can only travel towards smaller or larger r but never switch direction.

The full energy equation reads

ṙ2 +
h2

r2

(

1−
2µ

r

)

= c2k2.

For r < 2µ the second term is negative. However, the right-hand side is necessarily ≥ 0, and
so we must have ṙ2 > 0. Therefore ṙ += 0 and photons are stuck with whatever sign of ṙ they
start with. This is one way of seeing that photons that enter a black-hole can never escape.
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8.1. When a massM lies along the line of sight to a source S, it bends the light to form an “Einstein
ring”. The figure below shows the geometry of the ring formation.

(a) Use the light-deflection formula from lectures to show that the angular radius α is given
by

α2 =
4GM

c2

(

1

dL
−

1

dS

)

.

The closest approach of the light to the mass M r0 is given by the small angle approxima-
tion as

r0 = dLα = (dS − dL)β,

where β is the angular radius seen from the source. Simple geometry of triangles shows
that

α + β = ∆φ =
4GM

c2r0
.

Therefore substituting for β and r0,

α +
dL

dS − dL
α =

4GM

c2dLα
,

and thus
dS

dS − dL
α2 =

4GM

c2dL
.

The relation given follows easily.

(b) Calculate the angular radius of the Einstein ring formed when M = 1M!, dS = 8kpc
and dL = 4kpc.

The angle works out to be

α = 4.9× 10−9 rad = 0.0010”.

This is beyond current optical capabilities to resolve, although associated positional shifts
could be measured. Easier however are the strong flux variations that occur as the source
is magnified in apparent size.
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8.2. Light can orbit in a circle at radius r = 3GM/c2 from a mass M , but such orbits are unstable.
By approximating the radial ‘”energy” equation for photons for a small perturbation from the
exact circular orbit radius, show that the perturbation grows as eφ where φ is the azimuthal
angle travelled by the photons.

The energy equation for photon orbits is

ṙ2 +
h2

r2

(

1−
2µ

r

)

= c2k2.

Consider the second term expanded about its maximum at r = 3µ. If we define f(r) by

f(r) =
h2

r2

(

1−
2µ

r

)

,

then
df

dr
= −

2h2

r3
+

6h2µ

r4
= 0,

for r = 3µ, while
d2f

dr2
=

6h2

r4
−

24h2µ

r5
= −

2h2

81µ
,

for r = 3µ. Therefore, for r = 3µ+ ε, the energy equation can be approximated by

ε̇2 +
1

2
f ′′(rc)ε

2 = constant,

since the first derivative f ′(rc) = 0 and ignoring third-order and higher terms. On taking the
derivative, substituting for f ′′ and dividing by 2ε̇

ε̈ =
h2

81µ4
ε.

The dots are derivatives with respect to affine parameter λ, but can be converted to something
more meaningful using h = r2φ̇, or φ̇ = h/9µ2. If we divide this twice into both sides of the
equation for ε then

d2ε

dφ2
= ε.

The general solution of this is ε = ae−φ+ beφ. The growing solution will soon dominate, giving
growth of the type specified in the question.

8.3. Calculate the coordinate time taken for light to complete one circular orbit of a 10M! black-
hole.

The time is given by

T =
2π

dφ/dt
,
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where
dφ

dt
=

dφ/dλ

dt/dλ
=

h(1− 2µ/r)

r2k
,

where use has been made of h = r2φ̇ and k = (1− 2µ/r)ṫ. For circular photon orbits

h2

r2

(

1−
2µ

r

)

= c2k2,

therefore
h

k
= c

(

1−
2µ

r

)−1/2

r,

and so
dφ

dt
= c

(

1−
2µ

r

)1/2

r−1.

Therefore

T =
2πr

c

(

1−
2µ

r

)−1/2

.

For a circular orbit r = 3µ, and remembering µ = GM/c2, we obtain

T = 2
√
3
πGM

c3
.

For M = 10M!, this works out at 5.4× 10−4 sec.

8.4. Were you to fall into a black-hole, would you see the singularity at r = 0 once you crossed the
event horizon? Justify your answer.

No. The singularity horizon lies in your future, while everything you see is in your past, so
you would have to be clairvoyant to see the singularity.

8.5. Obtain expressions for the distance between two points on the same radial line at radii r1 and
r2 (Schwarzschild coordinates) from a mass M in two ways:

(a) By evaluating the proper or “ruler” distance,

The Schwarzschild metric is

ds2 = c2
(

1−
2µ

r

)

dt2 −
(

1−
2µ

r

)−1

dr2 − r2 dΩ2.

Therefore the proper distance is given by

dP =

∫ r2

r1

dr

(1− 2µ/r)1/2
,

=

∫ r2

r1

r1/2 dr

(r − 2µ)1/2
.
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Substituting r = 2µ cosh x,

dP = 2µ

∫ x2

x1

cosh x dx,

=
(

r22 − (2µ)2
)1/2 −

(

r21 − (2µ)2
)1/2

.

(b) By taking c times the light travel time as measured by an observer stationary at r = r2.

For photons ds = 0, and so for radial paths (dΩ = 0)

c dt = ±
dr

1− 2µ/r
.

Either sign then implies on integrating that

c∆t =

∫ r2

r1

dr

1− 2µ/r
.

This is measured in coordinate time. In terms of the time of an observer at r2,

∆t2 =

(

1−
2µ

r2

)1/2

∆t,

and therefore the light-travel time distance referred to an observer at r2 is given by

dL =

(

1−
2µ

r2

)1/2 ∫ r2

r1

dr

1− 2µ/r
,

=

(

1−
2µ

r2

)1/2 ∫ r2

r1

r dr

r − 2µ
,

=

(

1−
2µ

r2

)1/2 ∫ r2

r1

(

r − 2µ

r − 2µ
+

2µ

r − 2µ

)

dr,

=

(

1−
2µ

r2

)1/2 (

r2 − r1 + 2µ ln
r2 − 2µ

r1 − 2µ

)

.

Hence calculate the difference between these two distances and the coordinate distance r2− r1
for a radial line from the surface of the Sun to Earth.

[Ignore any motion of either the Sun or Earth.]

In this case r1 = 7× 105 km, r2 = 1.5× 108 km and µ = 1.5 km, so r1 and r2 % µ. In this case
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we can approximate the values. First, the proper distance

dP =
(

r22 − (2µ)2
)1/2 −

(

r21 − (2µ)2
)1/2

,

= r2

(

1−
(2µ)2

r22

)1/2

− r1

(

1−
(2µ)2

r21

)1/2

,

≈ r2

(

1−
2µ2

r22

)

− r1

(

1−
2µ2

r21

)

,

= r2 − r1 + 2µ2

(

1

r1
−

1

r2

)

.

This is longer than the coordinate estimate by

2µ2

(

1

r1
−

1

r2

)

= 4.2mm.

For the light-travel distance, the excess over r2 − r1 is easily shown to be

≈ 2µ ln
r2
r1

− (r2 − r1)
µ

r2
.

The first term is the “Shapiro delay” term while the second simply arises from the gravitational
time dilation at r2. For the Sun–Earth path here, this works out at 14.6 km.

8.6. In terms of Schwarzschild coordinates r and t, Kruskal’s coordinates u and v are given for
r > 2µ by

v =

(

r

2µ
− 1

)1/2

exp

(

r

4µ

)

sinh

(

ct

4µ

)

,

u =

(

r

2µ
− 1

)1/2

exp

(

r

4µ

)

cosh

(

ct

4µ

)

,

whereas for r < 2µ

v =

(

1−
r

2µ

)1/2

exp

(

r

4µ

)

cosh

(

ct

4µ

)

,

u =

(

1−
r

2µ

)1/2

exp

(

r

4µ

)

sinh

(

ct

4µ

)

,

Show that

(a) lines of constant r are hyperbolae in Kruskal coordinates,

The equations for u and v are easily combined to eliminate t using the relation cosh2 − sinh2 =
1 which implies

u2 − v2 =

(

r

2µ
− 1

)

exp

(

r

2µ

)

,

for r > 2µ and also for r < 2µ. For constant r these are clearly hyperbolae.
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(b) lines of constant t are straight lines through the origin, and, in particular, that straight
lines running through the origin at ±45◦ represent t = ±∞, r = 2µ.

If one takes the ratio u/v, the radius r drops out, so lines of constant t give constant
u/v. Lines of 45◦ require v = ±u, or sinh(ct/4µ) = cosh(ct/4µ). This is only possible for
t → ±∞.

(c) the interval is given by

ds2 =
32µ3

r
exp

(

−
r

2µ

)

(

dv2 − du2
)

− r2
(

dθ2 + sin2 θ dφ2
)

,

This is best done in reverse in this case, i.e. by obtaining expressions for du and dv in
terms of dr and dt and showing that they lead back to the Schwarzschild metric. We have

dv =

(

r

2µ
− 1

)1/2

exp

(

r

4µ

)

sinh

(

ct

4µ

)

1

4µ
dr +

(

r

2µ
− 1

)−1/2

exp

(

r

4µ

)

sinh

(

ct

4µ

)

1

4µ
dr +

(

r

2µ
− 1

)1/2

exp

(

r

4µ

)

cosh

(

ct

4µ

)

c

4µ
dt,

which reduces to

dv =
r

2µ

(

r

2µ
− 1

)−1/2

exp

(

r

4µ

)

sinh

(

ct

4µ

)

1

4µ
dr +

(

r

2µ
− 1

)1/2

exp

(

r

4µ

)

cosh

(

ct

4µ

)

c

4µ
dt.

Similarly

du =
r

2µ

(

r

2µ
− 1

)−1/2

exp

(

r

4µ

)

cosh

(

ct

4µ

)

1

4µ
dr +

(

r

2µ
− 1

)1/2

exp

(

r

4µ

)

sinh

(

ct

4µ

)

c

4µ
dt.

Taking the difference between the squares dv2 − du2, the cross terms cancel and using
cosh2 − sinh2 = 1 we are left with

dv2 − du2 =

(

r

2µ
− 1

)

exp

(

r

2µ

)

c2

(4µ)2
dt2 −

(

r

2µ

)2 ( r

2µ
− 1

)−1

exp

(

r

2µ

)

1

(4µ)2
dr2.

Multiplying by 16µ2 exp(−r/2µ)

16µ2 exp

(

−
r

2µ

)

(

dv2 − du2
)

=

(

r

2µ
− 1

)

c2 dt2 −
(

r

2µ

)2 ( r

2µ
− 1

)−1

dr2.
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Finally multiplying by 2µ/r

32µ3

r
exp

(

−
r

2µ

)

(

dv2 − du2
)

=

(

1−
2µ

r

)

c2 dt2 −
(

1−
2µ

r

)−1

dr2.

The right-hand side of this equation is the first part of the Schwarzschild interval; the
angular terms go through unchanged. For r < 2µ, the same results.

(d) u is spacelike and v is timelike, for all r

“Spacelike” implies ds2 < 0. For dv = dΩ = 0, the form of the interval makes it clear
that u is spacelike. Similarly v is clearly timelike (leading to ds2 > 0).

(e) photons on radial paths travel on the same ±45◦ lines in u, v coordinates that they do in
Minkowski spacetime diagrams

Photons always travel along null paths ds2 = 0, and for radial paths dΩ = 0, so

dv2 − du2 = 0,

which gives
v = ±u+ c,

QED.

(f) there is one line of r = 0 in Kruskal space that can only ever be in your future and another
that can only ever be in your past.

For r = 0, the relation of part (a) reduces to

v2 − u2 = 1,

i.e.
v = ±

√
1 + u2.

In a u–v spacetime diagram, with v timelike (vertical axis), these are two hyperbolae as
shown in Fig. 2. It can be seen that points on these hyperbolae can only ever lie in the
future (upper hyperbola) or past (lower hyperbola) of events in region (1) which represent
the region outside the event horizon. In fact they can only represent the past and future of
any events since the regions above the upper or below the lower hyperbola do not correspond
to any real events. The upper hyperbola is the singularity one cannot avoiding meeting on
falling through the event horizon of a black-hole. The lower one could only ever produce
particles a so-called “white hole”. Whether these exist in reality is unknown.
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Figure 2: Kruskal diagram showing an event E and its past and future light-cones..

8.7. During an experiment near a black-hole, Alice’s jet-pack fails. Her selfish fellow astronaut
Bob’s main concern is for his own peace of mind in the event of his seeing Alice tested to
breaking point by tidal forces.

Use a Kruskal diagram to show graphically that, however long he waits, Bob will never see
Alice cross the event horizon. (Thus as long as the black-hole is massive enough to swallow
Alice in one piece, Bob need not worry about future sleepless nights.)

In a fit of remorse, Bob decides that he will at least keep sending Alice signals while he can
still see her, although this threatens to be forever as she appears to him to be stuck at the
event horizon. Show again from the Kruskal diagram that there will come a time when Bob
should stop sending signals to Alice because she will in fact have reached the singularity.

[You may assume that Alice and Bob are on the same radial line.]

Fig. 3 describes the situation. Assume that Alice and Bob were at radial coordinate r = 2.5µ
when Alice’s jet-pack failed at event F , and that Bob stays at this radius so that the right-
hand hyperbola is his worldline. Alice’s worldline into the black-hole is marked by the dashed
line, which ends at C. A typical signal from Alice to Bob is shown by the line A to B. It is
evident that once Alice crosses the event horizon (the 45◦ line running from the origin), no
more signals from her will reach Bob. As Alice approaches the event horizon it will take longer
and longer for signals from her to reach Bob who will see her frozen at the point she crosses
the event horizon.

Alice can keep receiving signals from Bob up until event L on Bob’s worldline. A signal from
this point will meet Alice at the same time as she reaches the singularity at C. There will be
no point in Bob’s signalling after L.
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Figure 3: Kruskal diagram showing Alice’s path into the black-hole, F to C.

8.8. “Advanced Eddington-Finkelstein” coordinates use the constant of integration in the equation
for worldlines of radially infalling photons to replace the coordinate t in the Schwarzschild
metric with t′ given by

ct′ = ct+ 2µ ln

∣

∣

∣

∣

r

2µ
− 1

∣

∣

∣

∣

.

(a) Obtain an expression for the interval in the Schwarzschild geometry using t′ and r rather
than t and r (you may ignore the angular terms).

(b) Derive relations for t′ as a function of r for in- and out-going photons and use these to
plot the light-cone structure near a black-hole in these coordinates.

(c) Use this structure to show that once inside a black-hole, there is no escape.
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